Answer:
E = 1.25×10¹³ N/m²
Explanation:
Young's modulus is defined as:
E = stress / strain
E = (F / A) / (dL / L)
E = (F L) / (A dL)
Given:
F = 10 kg × 9.8 m/s² = 98 N
L = 1 m
dL = 10⁻⁵ m
A = π/4 (0.001 m)² = 7.85×10⁻⁷ m²
Solve:
E = (98 N × 1 m) / (7.85×10⁻⁷ m² × 10⁻⁵ m)
E = 1.25×10¹³ N/m²
Round as needed.
Incomplete question.The complete question is here
Determine the torque applied to the shaft of a car that transmits 225 hp and rotates at a rate of 3000 rpm.
Answer:
Torque=0.51 Btu
Explanation:
Given Data
Power=225 hp
Revolutions =3000 rpm
To find
T( torque )=?
Solution
As

As force moves an object through a distance, work is done on the object. Likewise, when a torque rotates an object through an angle, work is done.
So

Answer:
Explanation:
graph would be a straight line from (0, 0) to (400, 8)
Plot points are
PE = mgh
50(0) = 0 J
50(2) = 100 J
50(4) = 200 J
50(6) = 300 J
50(8) = 400 J
= Heat released to cold reservoir
= Heat released to hot reservoir
= maximum amount of work
= temperature of cold reservoir
= temperature of hot reservoir
we know that

eq-1
maximum work is given as
=
- 
using eq-1
=
- 
Answer:
Flow Rate = 80 m^3 /hours (Rounded to the nearest whole number)
Explanation:
Given
- Hf = head loss
- f = friction factor
- L = Length of the pipe = 360 m
- V = Flow velocity, m/s
- D = Pipe diameter = 0.12 m
- g = Gravitational acceleration, m/s^2
- Re = Reynolds's Number
- rho = Density =998 kg/m^3
- μ = Viscosity = 0.001 kg/m-s
- Z = Elevation Difference = 60 m
Calculations
Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)
The energy equation for this system will be,
Hp = Z + Hf
The other three equations to solve the above equations are:
Re = (rho*V*D)/ μ
Flow Rate, Q = V*(pi/4)*D^2
Power = 15000 W = rho*g*Q*Hp
1/f^0.5 = 2*log ((Re*f^0.5)/2.51)
We can iterate the 5 equations to find f and solve them to find the values of:
Re = 235000
f = 0.015
V = 1.97 m/s
And use them to find the flow rate,
Q = V*(pi/4)*D^2
Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours