Answer:
V_infinty=98.772 m/s
Explanation:
complete question is:
The following problem assume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23kg/m3(0.002377slug/ft3) and 1.01imes105N/m2(2116lb/ft2), respectively. A Pitot tube on an airplane flying at standard sea level reads 1.07imes105N/m2. What is the velocity of the airplane?
<u>solution:</u>
<u>given:</u>
<em>p_o=1.07*10^5 N/m^2</em>
<em>ρ_infinity=1.23 kg/m^2</em>
<em>p_infinity=1.01*10^5 N/m^2</em>
p_o=p_infinity+(1/2)*(ρ_infinity)*V_infinty^2
V_infinty^2=9756.097
V_infinty=98.772 m/s
Answer:
L' = 1.231L
Explanation:
The transmission coefficient, in a tunneling process in which an electron is involved, can be approximated to the following expression:

L: width of the barrier
C: constant that includes particle energy and barrier height
You have that the transmission coefficient for a specific value of L is T = 0.050. Furthermore, you have that for a new value of the width of the barrier, let's say, L', the value of the transmission coefficient is T'=0.025.
To find the new value of the L' you can write down both situation for T and T', as in the following:

Next, by properties of logarithms, you can apply Ln to both equations (1) and (2):

Next, you divide the equation (3) into (4), and finally, you solve for L':

hence, when the trnasmission coeeficient has changes to a values of 0.025, the new width of the barrier L' is 1.231 L
Momentum is conserved.
p = m₁v₁ + m₂v₂ = constant
Momentum before the collision(kick):
p = 80 * 0 + 4 * 0 = 0
Momentum after the collision:
p = 80 * v₁ + 4 * 15 = 0
Solve for v₁.
Complete question:
The coordinate of a particle in meters is given by x(t)=1 6t- 3.0t³ , where the time tis in seconds. The
particle is momentarily at rest at t is:
Select one:
a. 9.3s
b. 1.3s
C. 0.75s
d.5.3s
e. 7.3s
Answer:
b. 1.3 s
Explanation:
Given;
position of the particle, x(t)=1 6t- 3.0t³
when the particle is at rest, the velocity is zero.
velocity = dx/dt
dx /dt = 16 - 9t²
16 - 9t² = 0
9t² = 16
t² = 16 /9
t = √(16 / 9)
t = 4/3
t = 1.3 s
Therefore, the particle is momentarily at rest at t = 1.3 s