Answer:
0 kg m/s before and after collision
Explanation:
Let m, v be the mass and speed of the 2 balls, respectively, before the collision. Since they have the same mass and same speed but in opposite direction, the total momentum of the system would be:
P = mv - mv = 0 kg m/s
As the collision is elastic. The total momentum after the collision is the same as the total momentum before the collision, which is 0.
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)
Answer:
Final temperature will be 438.076 K
Explanation:
We have given temperature
Volume 
As there is no heat transfer so this is an adiabatic process
For and adiabatic process 
Here 
So 

Explanation:
It is given that,
Mass of bumper car, m₁ = 202 kg
Initial speed of the bumper car, u₁ = 8.5 m/s
Mass of the other car, m₂ = 355 kg
Initial velocity of the other car is 0 as it at rest, u₂ = 0
Final velocity of the other car after collision, v₂ = 5.8 m/s
Let p₁ is momentum of of 202 kg car, p₁ = m₁v₁
Using the conservation of linear momentum as :


p₁ = m₁v₁ = -342 kg-m/s
So, the momentum of the 202 kg car afterwards is 342 kg-m/s. Hence, this is the required solution.
Answer:
The acceleration of the rocket is 10 m/s².
Explanation:
Let the acceleration of the rocket be
m/s².
Given:
Mass of the rocket is, 
Thrust force acting upward is, 
Acceleration due to gravity is, 
Now, force acting in the downward direction is due to the weight of the rocket and is given as:

Now, net force acting on the rocket in upward direction is given as:

Therefore, from Newton's second law, net force acting on the rocket is equal to the product of mass and acceleration.

Therefore, the acceleration of the rocket is 10 m/s².