First, we determine the number of moles of barium phosphate. This is done using:
Moles = mass / Mr
Moles = 1 / 602
Moles = 0.002
Now, we see from the formula of the compound that each mole of barium phosphate has 2 moles of phosphorus (P). Therefore, the moles of phosphorus are:
0.002 * 2 = 0.004
The number of particles in one mole of substance is 6.02 x 10²³. The number of phosphorus atoms will be:
0.004 * 6.02 x 10²³
2.41 x 10²¹ atoms of phosphorus are present
Answer : Total molecules that will be needed to visualize a single egg will be 78500 molecules of dye.
Explanation : As a single egg cell has an approximately diameter of 100 μm.
We can use this formula to calculate area of the cell membrane;
A = π
;
We can take π as 3.14 and we get;
A = 3.14 X
Soving we get;
A = 7850 μ
Here we have to calculate the amount of dye molecules which will be needed for 10 fluorescent molecules / μ
but;
here 1 μ
= 7850 μ
dye molecules.
Therefore, 10 fluorescent molecules will need;
7850 X 10 = 78500 molecules of dye.
Therefore, the answer is 78500 molecules of dye.
Radio - Radio station transmits radio wavelength which is received by the
Radio.
<span>
Microwaves - Microwave Oven to heat up foods. </span>
<span>IR (infrared) - TV remote Control, to transmit IR light to a sensor in the TV so it can do some functions like increasing the volume, changing the channel etc. </span>
<span>Visible light - Sunlight or Light Bulbs </span>
<span>Ultraviolet - UV Lamps for sun tan, for detecting forged money </span>
<span>X-rays - Chest X-ray machines, Backscatter Xray (body scanner in airport security)
</span>
Gamma rays - Gamma rays<span> Medical Equipment which are used to kill cancer cells, to sterilize medical </span>equipment<span> </span>
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
Answer:
Equilibrium constant of the given reaction is 
Explanation:
....
....
The given reaction can be written as summation of the following reaction-


......................................................................................

Equilibrium constant of this reaction is given as-
![\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNOBr%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%5BBr_%7B2%7D%5D%7D)
![=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B%5BNOBr%5D%7D%7B%5BNO%5D%5BBr_%7B2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%29%5E%7B2%7D%28%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%29)

