Answer:
Magnitude of impulse, |J| = 4 kg-m/s
Explanation:
It is given that,
Mass of cart 1, 
Mass of cart 2,
Initial speed of cart 1,
Initial speed of cart 2,
(stationary)
The carts stick together. It is the case of inelastic collision. Let V is the combined speed of both carts. The momentum remains conserved.

V = 1 m/s
The magnitude of the impulse exerted by one cart on the other is given by:


J = -4 kg-m/s
or
|J| = 4 kg-m/s
So, the magnitude of the impulse exerted by one cart on the other 4 kg-m/s. Hence, this is required solution.
The average current density in the wire is given by:

where I is the current intensity and A is the cross-sectional area of the wire.
The cross-sectional area of the wire is given by:

where r is the radius of the wire. In this problem,
, so the cross-sectional area is

and the average current density is

Answer:

Explanation:
Given that
J(r) = Br
We know that area of small element
dA = 2 π dr
I = J A
dI = J dA
Now by putting the values
dI = B r . 2 π dr
dI= 2π Br² dr
Now by integrating above equation


Given that
B= 2.35 x 10⁵ A/m³
r₁ = 2 mm
r₂ = 2+ 0.0115 mm
r₂ = 2.0115 mm

By putting the values


In-situ leaching or solution mining offers the least ground disruptive type of mining and waste. This type of mining only dissolves the uranium where it is under the ground then pump up to the ground and further processed through milling.
A. a<span> = 1.3 m/s^2</span><span>; </span>FN<span> = 63.1 N</span>