answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natima [27]
2 years ago
13

Tom’s company has been contracted to excavate uranium ore with minimal ground disruption. What process should his company use?

Physics
2 answers:
ziro4ka [17]2 years ago
7 0
In-situ leaching or solution mining offers the least ground disruptive type of mining and waste.  This type of mining only dissolves the uranium where it is under the ground then pump up to the ground and further processed through milling. 
julia-pushkina [17]2 years ago
5 0

Answer:

In-Situ leaching

Explanation:

There are five ways by which Uranium is mined.

In-situ leach - 44.9%

Underground mining - 26.2%

Open pit - 19.9%

Heap leaching - 1.7%

7.3% was derived from processing of by products of other minerals

In-Situ leaching involves dissolving the minerals of the ore by pumping lixivant through boreholes made by drilling or Explosive or hydraulic fracturing. So, here not a lot of excavation is done just a hole is drilled or bored to the location of the ore, the ore is then made porous then lixivant is pumped. Then the solution is pumped out and further chemical processes are carried out to extract uranium from the solution.

You might be interested in
A 30-km, 34.5-kV, 60-Hz, three-phase line has a positive-sequence series impedance z 5 0.19 1 j0.34 V/km. The load at the receiv
zmey [24]

Answer:

(a) With a short line, the A,B,C,D parameters are:

    A = 1pu    B = 1.685∠60.8°Ω    C = 0 S    D = 1 pu

(b) The sending-end voltage for 0.9 lagging power factor is 35.96 KV_{LL}

(c) The sending-end voltage for 0.9 leading power factor is 33.40 KV_{LL}

Explanation:

(a)

Considering the short transition line diagram.

Apply kirchoff's voltage law to the short transmission line.

Write the equation showing the relations between the sending end and the receiving end quantities.

Compare the line equations with the A,B,C,D parameter equations.

(b)

Determine the receiving-end current for 0.9 lagging power factor.

Determine the line-to-neutral receiving end voltage.

Determine the sending end voltage of the short transition line.

Determine the line-to-line sending end voltage which is the sending end voltage.

(c)

Determine the receiving-end current for 0.9 leading power factor.

Determine the sending-end voltage of the short transition line.

Determine the line-to-line sending end voltage which is the sending end voltage.

8 0
2 years ago
Inna Hurry is traveling at 6.8 m/s, when she realizes she is late for an appointment. She accelerates at 4.5 m/s^2 for 3.2 s. Wh
Alborosie

Answer:

1) v = 21.2 m/s

2) S = 63.33 m

3) s = 61.257 m

4) Deceleration, a = -4.32 m/s²

Explanation:

1) Given,

The initial velocity of Inna, u = 6.8 m/s

The acceleration of Inna, a = 4.5 m/s²

The time of travel, t = 3.2 s

Using the first equation of motion, the final velocity is

                v = u + at

                   = 6.8 + 4.5 x 3.2

                   = 21.2 m/s

The final velocity of Inna is, v = 21.2 m/s

2) Given,

The initial velocity of Lisa, u = 12 m/s

The final velocity of Lisa, v = 26 m/s

The acceleration of Lisa, a = 4.2 m/s²

Using the III equations of motion, the displacement is

                          v² = u² +2aS

                         S = (v² - u²) / 2a

                            = (26² -12²) / 2 x 4.2

                            = 63.33 m

The distance Lisa traveled, S = 63.33 m

3) Given,

The initial velocity of Ed, u = 38.2 m/s

The deceleration of Ed, d = - 8.6 m/s²

The time of travel, t = 2.1 s

Using the II equations of motion, the displacement is

                        s = ut + 1/2 at²

                           =38.2 x 2.1 + 0.5 x(-8.6) x 2.1²

                           = 61.257 m

Therefore, the distance traveled by Ed, s = 61.257 m

4) Given,

The initial velocity of the car, u = 24.2 m/s

The final velocity of the car, v = 11.9 m/s

The time taken by the car is, t = 2.85 s

Using the first equations of motion,

                         v = u + at

∴                        a = (v - u) / t

                            = (11.9 - 24.2) / 2.85

                            = -4.32 m/s²

Hence, the deceleration of the car, a = = -4.32 m/s²

5 0
2 years ago
Read 2 more answers
A torsional pendulum consists of a disk of mass 450 g and radius 3.5 cm, hanging from a wire. If the disk is given an initial an
Montano1993 [528]

To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:

\omega = 2\pi f

\omega = 2\pi (2.5)

\omega = 5\pi rad/s

The angular displacement is given as the form:

\theta (t) = \theta_0 cos(\omega t)

In the equlibrium we have to t=0, \theta(t) = \theta_0 and in the given position we have to

\theta(t) = \theta_0 cos(5\pi t)

Derived the expression we will have the equivalent to angular velocity

\frac{d\theta}{dt} = 2.7rad/s

Replacing,

\theta_0(sin(5\pi t))5\pi = 2.7

Finally

\theta_0 = \frac{2.7}{5\pi}rad = 9.848\°

Therefore the maximum angular displacement is 9.848°

6 0
2 years ago
You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a
Svetllana [295]

Answer:

Hello your question has some missing parts and the required diagram attached below is the missing part and the diagram

Digital circuits require actions to take place at precise times, so they are controlled by a clock that generates a steady sequence of rectangular voltage pulses. One of the most widely

used integrated circuits for creating clock pulses is called a 555 timer.  shows how the timer’s output pulses, oscillating between 0 V and 5 V, are controlled with two resistors and a capacitor. The circuit manufacturer tells users that TH, the time the clock output spends in the high (5V) state, is TH =(R1 + R2)*C*ln(2). Similarly, the time spent in the low (0 V) state is TL = R2*C*ln(2). Design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2?

ANSWER : R1 = 144.3Ω,   R2 =  72.2 Ω

Explanation:

Frequency = 10 MHz

Time period = 1 / F =  0.1 <em>u </em>s

Duty cycle = 75% = 0.75

Duty cycle can be represented as :   Ton / T

Also: Ton = Th = 0.75 * 0.1 <em>u </em>s  = 75 <em>n</em> s

TL = T - Th = 100 <em>n</em>s - 75 <em>n</em> s = 25 <em>n</em> s

To find the value of R2 we use the equation for  time spent in the low (0 V) state

TL = R2*C*ln(2)

hence R2 = TL / ( C * In 2 )

c = 500 pF

Hence R2 = 25 / ( 500 pF * 0.693 )  = 72.2 Ω

To find the value of R1 we use the equation for the time the clock output spends in the high (5V) state,

Th = (R1 + R2)*C*ln(2)

  from the equation make R1 the subject of the formula

R1 =  (Th - ( R2 * C * In2 )) / (C * In 2)

R1 = ( 75 ns - ( 72.2 * 500 pF * 0.693)) / ( 500 pF * 0.693 )

R1 = ( 75 ns  - ( 25 ns ) / 500 pf * 0.693

     = 144.3Ω

8 0
2 years ago
A soccer ball kicked with a force of 13.5 n accelerates at 6.5 m/s^2 to the right. what is the mass of the ball?
natita [175]

Answer:

2.08 kg

Explanation:

Newton's second law states that the acceleration of an object is proportional to the force applied to the object, according to the equation:

F=ma

where F is the force applied, m is the mass of the object and a its acceleration.

In this situation, the soccer ball is kicked with a force F=13.5 N and its acceleration is a=6.5 m/s^2, therefore its mass is

m=\frac{F}{a}=\frac{13.5 N}{6.5 m/s^2}=2.08 kg

6 0
2 years ago
Other questions:
  • The pesticide DDT was first made by a chemical company in 1939 and became widely used worldwide. Evidence that DDT builds up in
    5·2 answers
  • Explain how cognitive psychologists combine traditional conditioning models with cognitive processes.
    6·2 answers
  • A car going initially with a velocity 13.5 m/s accelerates at a rate of 1.9 m/s for 6.2 s. It then accelerates at a rate of-1.2
    13·2 answers
  • A straight, nonconducting plastic wire 9.50 cm long carries a charge density of 130 nC/m distributed uniformly along its length.
    5·1 answer
  • A transformer is to be used to provide power for a computer drive. The number of turns in the primary is 1000, and it delivers a
    10·1 answer
  • Carts A and B are identical and are moving toward each other on a track. The speed of cart A is v, while the speed of cart B is
    13·1 answer
  • A disk of radius R (Fig. P25.73) has a nonuniform surface charge density s 5 Cr, where C is a constant and r is measured from th
    6·1 answer
  • a 2.0 kg hoop rolls without slipping on a horizontal surface so that its center proceeds to the right with a constant linear spe
    7·1 answer
  • What is the direction of the magnetic field b⃗ net at point a? Recall that the currents in the two wires have equal magnitudes.
    5·1 answer
  • A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!