Answer:
Heat lost to the surroundings
Heat lost to the thermometer
Explanation:
All changes in heat, or energy, can be explained. Many of the reactions or changes we see in the world involve the conversion of energy. For example as we heat up a substance (eg. water), the amount of energy we put in should give us an exact temperature. However, this is a "perfect world" scenario, and does not occur in real life. Whenever heat is added to a substance like water, we always need to account for the energy that is going to be lost. For example, heat lost to evaporation or even the effect of measuring the temperature with a thermometer (the introduction of anything including a thermometer will affect the temperature).
Flame colors are produced from the movement of the electrons in the metal ions present in the compounds. When you heat it, the electrons gain energy and can jump into any of the empty orbitals at higher levels Each of these jumps involves a specific amount of energy being released as light energy, and each corresponds to a particular color. As a result of all these jumps, a spectrum of colored lines will be produced. The color you see will be a combination of all these individual colors.
Answer:
Shifts the equilibrium to the left. reduces solubility.
Explanation:
- MgF2(s) ↔ Mg2+(aq) + 2F-(aq)
S S 2S
∴ Ksp = 6.4 E-9 = [ Mg2+ ] * [ F- ]² = S * (2S)²
⇒ 4S² * S = 6.4 E-9
⇒ 4S³ = 6.4 E-9
⇒ S³ = 1.6 E-9
⇒ S = 1.1696 E-3 M
- NaF(s) → Na+(aq) + F-(aq)
0.10M 0.10M 0.10M
- MgF2(s) ↔ Mg2+(aq) + 2F-(aq)
S' S' 2S' + 0.10
⇒ Ksp = 6.4 E-9 = (S')*(2S' + 0.10)²
If we compare the concentration (0.10 M) of the ion with Ksp ( 6.4 E-9 ); thne we can neglect S' as adding:
⇒ 6.4 E-9 = (S')*(0.10)² = 0.01S'
⇒ S' = 6.4 E-7 M
∴ % S' = ( 6.4 E-7 / 0.1 )*100 = 6.4 E-4% <<< 5%, we can make the assumption
We can observe that S >> S' ( 1.1696 E-3 M >> 6.4 E-7 M ), which shows that the solubility is reduced by the efect of the common ion from the salt, which causes the equilibrium to shift to the left, precipitating part of MgF2(s).
Answer:

Explanation:
HCl + NaOH ⟶ NaCl + H₂O
There are two energy flows in this reaction.
Heat of reaction + heat to warm water = 0
q₁ + q₂ = 0
q₁ + mCΔT = 0
Data:
m(HCl) = 50 g
m(NaOH) = 50 g
T₁ = 22 °C
T₂ = 28.87 °C
C = 4.18 J·°C⁻¹g⁻¹
Calculations:
m = 50 + 50 = 100 g
ΔT = 28.87 – 22 = 6.9 °C
q₂ = 100 × 4.18 × 6.9 = 2900 J
q₁ + 2900 = 0
q₁ = -2900 J
The negative sign tells us that the reaction produced heat.
The reaction produced
.
<span>n this order, Ď=1.8gmL, cm=0.5, and mole fraction = 0.9
First, let's start with wt%, which is the symbol for weight percent. 98wt% means that for every 100g of solution, 98g represent sulphuric acid, H2SO4.
We know that 1dm3=1L, so H2SO4's molarity is
C=nV=18.0moles1.0L=18M
In order to determine sulphuric acid solution's density, we need to find its mass; H2SO4's molar mass is 98.0gmol, so
18.0moles1Lâ‹…98.0g1mole=1764g1L
Since we've determined that we have 1764g of H2SO4 in 1L, we'll use the wt% to determine the mass of the solution
98.0wt%=98g.H2SO4100.0g.solution=1764gmasssolution→
masssolution=1764gâ‹…100.0g98g=1800g
Therefore, 1L of 98wt% H2SO4 solution will have a density of
Ď=mV=1800g1.0â‹…103mL=1.8gmL
H2SO4's molality, which is defined as the number of moles of solute divided by the mass in kg of the solvent; assuming the solvent is water, this will turn out to be
cm=nH2SO4masssolvent=18moles(1800â’1764)â‹…10â’3kg=0.5m
Since mole fraction is defined as the number of moles of one substance divided by the total number of moles in the solution, and knowing the water's molar mass is 18gmol, we could determine that
100g.solutionâ‹…98g100gâ‹…1mole98g=1 mole H2SO4
100g.solutionâ‹…(100â’98)g100gâ‹…1mole18g=0.11 moles H2O
So, H2SO4's mole fraction is
molefractionH2SO4=11+0.11=0.9</span>