Answer: C
I hope this helped you
Answer: 350 kj/mol
Explanation:
As shown below this expression gives the activation energy of the reverse reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
1) The activation energy, EA is the difference between the potential energies of the reactants and the transition state:
EA = energy of the transition state - energy of the reactants.
2) The activation energy of the forward reaction given is:
EA = energy of the transition state - energy of [ NO2(g) + CO(g) ] = 75 kj/mol
3) The negative enthalpy change - 275 kj / mol for the forward reaction means that the products are below in the potential energy diagram, and that the potential energy of the products, [NO(g) + CO2(g) ] is equal to 75 kj / mol - 275 kj / mol = - 200 kj/mol
4) For the reverse reaction the reactants are [NO(g) + CO2(g)], and the transition state is the same than that for the forward reaction.
5) The difference of energy between the transition state and the potential energy of [NO(g) + CO2(g) ] will be the absolute value of the change of enthalpy plus the activation energy for the forward reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
EA reverse reaction = 75 kj / mol + |-275 kj/mol | = 75 kj/mol + 275 kj/mol = 350 kj/mol.
And that is the answer, 350 kj/mol
Answer:
Suspension
Explanation:
This mixture is a simple suspension.
A suspension is a mixture of small insoluble particles of a solid in a liquid or gas. Here, it is insoluble particles in liquid.
- Suspensions are settle on standing this is why they have to be mixed again.
- The particles do not pass through ordinary filter paper.
- They are usually cloudy and have an opaque color.
- The marinade is simply a suspension.
- It is not a solution because they do not settle on standing.
- Also, colloids do not settle on standing.
Answer:
( About ) 0.03232 M
Explanation:
Based on the units for this reaction it should be a second order reaction, and hence you would apply the integrated rate law equation "1 / [X] = kt + 1 / [
]"
This formula would be true for the following information -
{
= the initial concentration of X, k = rate constant, [ X ] = the concentration after a certain time ( which is what you need to determine ), and t = time in minutes }
________
Therefore, all we have left to do is plug in the known values. The initial concentration of X is 0.467 at a time of 0 minutes, as you can tell from the given data. This is not relevant to the time needed in the formula, as we need to calculate the concentration of X after 18 minutes ( time = 18 minutes ). And of course k, the rate constant = 1.6
1 / [X] = ( 1.6 )( 18 minutes ) + 1 / ( 0.467 ) - Now let's solve for X
1 / [X] = 28.8 + 1 / ( 0.467 ),
1 / [X] = 28.8 + 2.1413...,
1 / [X] = 31,
[X] = 1 / 31 = ( About ) 0.03232 M
Now for this last bit here you probably are wondering why 1 / 31 is not 0.03232, rather 0.032258... Well, I did approximate one of the numbers along the way ( 2.1413... ) and took the precise value into account on my own and solved a bit more accurately. So that is your solution! The concentration of X after 18 minutes is about 0.03232 M
<u>Answer:</u>
<u>For 1:</u> The mass of
in the original mixture is 10.46 g
<u>For 2:</u> The mass of
in the original mixture is 21.11 g
<u>Explanation:</u>
We are given:
Mass of water = 1.90 g
Mass of carbon dioxide = 13.64 g
Mass of oxygen = 4.10 g
The given chemical reaction for decomposition of
follows:

By Stoichiometry of the reaction:
of oxygen is produced when
of potassium chlorate is decomposed.
So, 4.10 g of oxygen will be produced when =
of potassium chlorate is decomposed.
Amount of
in the mixture = 10.46 g
The given chemical reaction for decomposition of
follows:

By Stoichiometry of the reaction:
18 g of water is produced when
of potassium bicarbonate is decomposed.
So, 1.90 g of water will be produced when =
of potassium bicarbonate is decomposed.
Amount of
in the mixture = 21.11 g