Answer:
0.0016 cm
Explanation:
= Thermal coefficient of expansion of brass = 
= Thermal coefficient of expansion of glass = 
= Change in temperature = 
= Initial radius = 4 cm
Change in radius of material is given by

Difference in radii of the lid and jar

The size of the gap is 0.0016 cm or 0.000016 m
Answer:
The atomic weight in g/mole of the metal (molar mass) is 8.87.
Explanation:
To begin, it is possible to assume that, as a sample, it has 100 g of the compound. This means that:
- 52.92% metal: 52.92 g M
- 47.80% oxygen: 47.80 g O
Using the molar mass of oxygen, which is 16 g / mol, it is possible to calculate the amount of moles of oxygen present in the sample using the rule of three:

moles of oxygen=2.9875
The chemical formula of metal oxide tells you that:
2 M⁺³ + 3 O²⁻ ⇒ M₂O₃
In the previous equation you can see that you need 3 oxygen anions to react with two metal cations. Then:

You have 52.92 g of metal in the sample, then the molar mass of the metal is:

molar mass≅ 8.87 g/mol
<u><em> The atomic weight in g/mole of the metal (molar mass) is 8.87.</em></u>
The closest match to this value is Beryllium (Be), which has an atomic mass of 9.0122 g / mol.
In elastic
collision, both the kinetic energy and momentum are conserved. Conservation
means that both the kinetic energy and momentum will have the same values
before and after elastic collision.
<span>As the
object A has low mass than object B. Hence upon collision, object B moves
forward, while object A will move backward. So option "C" is correct. </span>
Answer:
The force is unbalanced
Explanation:
After an arrow is shot, the force acting on the arrow is unbalanced. The resulting net force gives the arrow an initial acceleration which wanes with time and the body is brought to rest.
The net force acting on an arrow is not zero and this indicates that the forces acting on the arrow is unbalanced.
If the force is balanced, the arrow is expect to continue in uniform motion but that is not the case as air resistance has massive impact on this body.