answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady_Fox [76]
2 years ago
6

You weigh yourself at the top of a high mountain and the scale reads 728 N. If your

Physics
1 answer:
SpyIntel [72]2 years ago
4 0

The gravitational strength is equal to 9.71\frac{N}{kg}

Why?

Since we are given the gravity force acting (728N) and the mass (75Kg), we can calculate the gravitational strength using the following formula:

gravityforce=mass*gravitationalStrength\\\\gravitationalStrength=\frac{gravityforce}{mass} \\\\gravitationalStrength=\frac{728N}{75kg}=9.71\frac{N}{kg}

Have a nice day!

You might be interested in
Suppose you wanted to hold up an electron against the force of gravity by the attraction of a fixed proton some distance above i
SCORPION-xisa [38]

Answer:

The value is  r =  5.077 \  m

Explanation:

From the question we are told that

   The  Coulomb constant is  k =  9.0 *10^{9} \  N\cdot  m^2  /C^2

   The  charge on the electron/proton  is  e =  1.6*10^{-19} \  C

    The  mass of proton m_{proton} =  1.67*10^{-27} \  kg

    The  mass of  electron is  m_{electron } =  9.11 *10^{-31} \ kg

Generally for the electron to be held up by the force gravity

   Then    

       Electric force on the electron  =  The  gravitational Force

i.e  

            m_{electron} *  g  = \frac{ k *  e^2  }{r^2 }

         \frac{9*10^9 *  (1.60 *10^{-19})^2  }{r^2 }  =     9.11 *10^{-31 }  *  9.81

         r =  \sqrt{25.78}

         r =  5.077  \  m

7 0
2 years ago
Alonzo sprints for 500 meters along a straight track during a race. After crossing the finish line, he to walks back along the t
Nata [24]
450 meters, straight ahead is the answer.
6 0
2 years ago
Read 2 more answers
A spherical electron cloud surrounding an atomic nucleus would best represent
podryga [215]

Answer:

a S orbital

Explanation:

Atomic orbitals is the place where we are most likely to find at least one electron, this definition is based on the equation posed by Erwin Schrödinger.

It is said that each electron occupies an atomic orbital that is defined by a series of quantum numbers s, n, ml, ms. In any atom each orbital can contain two electrons. It is possible that thanks to the function of the orbitals, the appearance that atoms can have is that of a diffuse cloud.

The orbitals s (l = 0) have a spherical shape. The extent of this orbital depends on the value of the main quantum number, so a 3s orbital has the same shape but is larger than a 2s orbital.

The orbitals p (l = 1) are formed by two identical lobes that project along an axis. The junction zone of both lobes coincides with the atomic nucleus. There are three orbitals p (m = -1, m = 0 and m = + 1) in the same way, which differ only in their orientation along the x, y or z axes.

The orbitals d (l = 2) are also formed by lobes. There are five types of d orbitals (corresponding to m = -2, -1, 0, 1, 2)

6 0
2 years ago
A sled starts from rest at the top of a hill and slides down with a constant acceleration. At some later time it is 14.4 m from
Alenkasestr [34]

Answer:

V₁  = 5.6 m/s

V₂ = 7.2 m/s

V₃ = 8.8 m/s

Explanation:

Average velocity: Average velocity can be defined as the ratio of the total  displacement to the total time taken. The S.I unit of Average velocity is m/s.

For the first 2 s,

V₁ = Δd₁/t

Where V₁  = Average velocity for the first 2 s

Where Δd₁= distance, t = time

Δd₁ = 25.6-14.4 = 11.2 m t = 2 s

V₁ = 11.2/2

V₁ = 5.6 m/s

For the second 2 s,

V₂ =Δd₂/t

Where V₂ = average velocity for the second 2 s.

Δd₂= 40-25.6 = 14.4 m, t= 2 s

V₂ = 14.4/2

V₂ = 7.2 m/s

For the last 2 seconds,

V₃ =Δd₃/t

Where V₃ = average velocity for the last 2 s

where Δd₃ = 57.6- 40 = 17.6 m, t = 2 s

V₃ = 17.6/2

V₃ = 8.8 m/s.

8 0
2 years ago
A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it st
jeka57 [31]

Answer:

The magnitude of change in momentum is (2mv).

Explanation:

The momentum of an object is given by the product of mass and velocity with which it is moving.

Let the mass of ball is m. A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it struck the wall.

Initial speed of the ball is v and final speed, when it rebounds, is (-v). The change in momentum is given by :

p = final momentum - initial momentum

p=-mv-mv\\\\p=-2mv

So, the magnitude of change in momentum is (2mv).

3 0
2 years ago
Other questions:
  • A noise level of 95 db is ______ than the lowest level at which hearing protection is required (85 db), and your exposure should
    11·2 answers
  • A catcher stops a 0.15-kg ball traveling at 40 m/s in a distance of 20 cm. what is the magnitude of the average force that the b
    10·2 answers
  • Particles in a __________ wave move in an elliptical or circular motion. question 4 options: sound longitudinal transverse surfa
    11·2 answers
  • two forces are acting on a wheelbarrow. One force is pushing to the right and an equal force is pushing to the left. What can yo
    15·2 answers
  • The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob
    8·1 answer
  • A 2-kg cart, traveling on a horizontal air track with a speed of 3 m/s, collides with a stationary 4-kg cart. The carts stick to
    5·1 answer
  • 1. Use Coulomb’s Law (equation below) to calculate the approximate force felt by an electron at point A in the schematic below.
    6·1 answer
  • Two very large parallel metal plates, separated by 0.20 m, are connected across a 12-V source of potential. An electron is relea
    15·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
  • A rock falls for 1.43 seconds how far did it fall? The falls's velocity is an acceleration of -9.81 m/s2
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!