answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
2 years ago
4

A heavy (2.0 kg) point-like object rests 2.0m from the center of a rough turntable as the turntable rotates. The period of the t

urntable's rotation is 5.0 seconds. The coefficient of kinetic friction between the object and turntable is 0.50, while the coefficient of static friction is 0.80. What is the magnitude of the force of friction acting on the object?
Physics
1 answer:
Aloiza [94]2 years ago
3 0

Answer:

6.32N

Explanation:

According to Newton's second law:

\sum F=ma

In this case the only force that acts on the object is the friction force, and the acceleration, is the centripetal acceleration since it is a circular movement, so we have:

F_f=ma_c(1)

Centripetal aceleration is given by:

a_c=\frac{v^2}{r}(2)

The speed is given by:

v=\omega r\\\omega=\frac{2\pi}{T}\\v=\frac{2\pi r}{T}

Replacing v in (2) and a_c in (1):

F_f=m\frac{v^2}{r}\\F_f=m\frac{(\frac{2\pi r}{T})^2}{r}\\F_f=m\frac{4\pi^2 r}{T^2}\\F_f=2kg(\frac{4\pi^2(2m)}{(5s)^2)}\\F_f=6.32N

You might be interested in
Determine the change in thermal energy of 100 g of copper (M = 63,5, Debye 348K) if it is cooled from
Setler [38]

Answer:

given,

mass of copper = 100 g

latent heat of liquid (He) = 2700 J/l

a) change in energy

Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (300 - 4)

Q = 11153.63 J

He required

Q = m L

11153.63 = m × 2700

m = 4.13 kg

b) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (78 - 4)

Q = 2788.41 J

He required

Q = m L

2788.41 = m × 2700

m = 1.033 kg

c) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (20 - 4)

Q = 602.90 J

He required

Q = m L

602.9 = m × 2700

m =0.23 kg

8 0
2 years ago
A large container, 120 cm deep is filled with water. If a small hole is punched in its side 77.0 cm from the top, at what initia
prisoha [69]

Answer:

The water will flow at a speed of 3,884 m/s

Explanation:

Torricelli's equation

v = \sqrt{2gh}

*v = liquid velocity at the exit of the hole

g = gravity acceleration

h = distance from the surface of the liquid to the center of the hole.

v = \sqrt{2*9,8m/s^2*0,77m} = 3,884 m/s

6 0
2 years ago
A rigid tank contains nitrogen gas at 227 °C and 100 kPa gage. The gas is heated until the gage pressure reads 250 kPa. If the a
aleksley [76]

Answer:

 T₂ =602  °C

Explanation:

Given that

T₁ = 227°C =227+273 K

T₁ =500 k

Gauge pressure at condition 1 given = 100 KPa

The absolute pressure at condition 1 will be

P₁ = 100 + 100 KPa

P₁ =200 KPa

Gauge pressure at condition 2 given = 250 KPa

The absolute pressure at condition 2 will be

P₂ = 250 + 100 KPa

P₂ =350 KPa

The temperature at condition 2 = T₂

We know that

\dfrac{T_2}{T_1}=\dfrac{P_2}{P_1}\\T_2=T_1\times \dfrac{P_2}{P_1}\\T_2=500\times \dfrac{350}{200}\ K\\

T₂ = 875 K

T₂ =875- 273 °C

T₂ =602  °C

5 0
2 years ago
Sophia is planning on going down an 8-m water slide. Her weight is 50 N. She knows that she has gravitational potential energy (
RideAnS [48]

Answer:

Explanation:

graph would be a straight line from (0, 0) to (400, 8)

Plot points are

PE = mgh

50(0) = 0 J

50(2) = 100 J

50(4) = 200 J

50(6) = 300 J

50(8) = 400 J

4 0
2 years ago
A roller coaster car drops a maximum vertical distance of 35.4 m. Determine the maximum speed of the car at the bottom of that d
marissa [1.9K]

Answer:

The maximum speed of the car at the bottom of that drop is 26.34 m/s.

Explanation:

Given that,

The maximum vertical distance covered by the roller coaster, h = 35.4 m

We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :

mgh=\dfrac{1}{2}mv^2

v=\sqrt{2gh}

v=\sqrt{2\times 9.8\times 35.4}

v = 26.34 m/s

So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.

8 0
2 years ago
Other questions:
  • Which of the following equations illustrates the law of conservation of matter?
    10·1 answer
  • Hurricane katrina, which hit the gulf coast of louisiana and mississippi on august 29, 2005, had the second lowest ever recorded
    11·1 answer
  • An object moving at a constant velocity travels 274 m in 23 s. what is its velocity?
    9·2 answers
  • Water in the lake behind hoover dam is 221 m deep. part a what is the gauge water pressure at the base of the dam?
    6·2 answers
  • What is the effect of the following change on the volume of 1 mol of an ideal gas? The initial pressure is 722 torr, the final p
    13·1 answer
  • An argon ion laser puts out 5.0 W of continuous power at a wavelength of 532 nm. The diameter of the laser beam is 5.5 mm. If th
    14·1 answer
  • Dane is standing on the moon holding an 8 kilogram brick 2 metres above the ground. How much energy is in the brick's gravitatio
    14·2 answers
  • Two children are pulling and pushing a 30.0 kg sled. The child pulling the sled is exerting a force of 12.0 N at a 45o angle. Th
    10·2 answers
  • Peter left Town A at 13:30 and travelled towards Town B at an
    11·1 answer
  • According to the law of universal gravitation, gravity is the force keeping objects in the universe in their relative positions.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!