The magnitude of the change in momentum of the stone is about 18.4 kg.m/s

<h3>Further explanation</h3>
Let's recall Impulse formula as follows:

<em>where:</em>
<em>I = impulse on the object ( kg m/s )</em>
<em>∑F = net force acting on object ( kg m /s² = Newton )</em>
<em>t = elapsed time ( s )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of ball = m = 0.500 kg
initial speed of ball = vo = 20.0 m/s
final kinetic energy = Ek = 70% Eko
<u>Asked:</u>
magnitude of the change of momentum of the stone = Δp = ?
<u>Solution:</u>
<em>Firstly, we will calculate the final speed of the ball as follows:</em>



→ <em>negative sign due to ball rebounds</em>


<em>Next, we could find the magnitude of the change of momentum of the stone as follows:</em>

![\Delta p_{stone} = - [ mv - mv_o ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20-%20%5B%20mv%20-%20mv_o%20%5D)
![\Delta p_{stone} = m[ v_o - v ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20m%5B%20v_o%20-%20v%20%5D)
![\Delta p_{stone} = m[ v_o + v_o\sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20m%5B%20v_o%20%2B%20v_o%5Csqrt%7B0.7%7D%20%5D)
![\Delta p_{stone} = mv_o [ 1 + \sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20mv_o%20%5B%201%20%2B%20%5Csqrt%7B0.7%7D%20%5D)
![\Delta p_{stone} = 0.500 ( 20.0 ) [ 1 + \sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%200.500%20%28%2020.0%20%29%20%5B%201%20%2B%20%5Csqrt%7B0.7%7D%20%5D)


<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Dynamics
For this, we need the formula:
V = k q / r
where k is the Coulombs law constant = 9 x 10^9 N
q is the charge of the hydrogen nucleus (proton) = <span>1.6 x 10^-19 C</span>
r is the distance
Simply plug in the values and solve for V
<span>At time t1 = 0 since the body is at rest, the body has an angular velocity, v1, of 0. At time t = X, the body has an angular velocity of 1.43rad/s2. Since Angular acceleration is just the difference in angular speed by time. We have 4.44 = v2 -v1/t2 -t1 where V and t are angular velocity and time. So we have 4.44 = 1.43 -0/X - 0. Hence X = 1.43/4.44 = 0.33s.</span>
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of


Answer:
Mass of Little Sister = 44.17 kg
Explanation:
From Newton's second law of motion, the magnitude of force applied on the sled is given by the following formula:
F = ma
where,
F = Force Applied = 120 N
a = Acceleration = 2.3 m/s²
m = Mass of Sled + Mass of Little Sister = 8 kg + Mass of Little Sister
Therefore,
120 N = (2.3 m/s²)(8 kg + Mass of Little Sister)
(120 N)/(2.3 m/s²) = 8 kg + Mass of Little Sister
Mass of Little Sister = 52.17 kg - 8 kg
<u>Mass of Little Sister = 44.17 kg</u>