answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
2 years ago
9

What is the magnitude of the acceleration that is produced when the brakes of a 2.4 x 103 kg car apply a 3.2 x 103 N force to st

op the car?
A .75 m/s2

B 1.3 m/s2

C 5.6 x 103 m/s2

D 7.7 x 106 m/s2
Physics
1 answer:
andriy [413]2 years ago
4 0

Answer:

B 1.3 m/s2

Explanation:

Newton's second law of motion states that the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force. This in form of an equation is F = m*a

Since you want to know the acceleration, you have to solve for a

F = m*a

a = F / m

and now you substitute the data

a = 3.2x10^3 N / 2.4x10^3 kg

a = 1.3 m/s^2

You might be interested in
A car drives at a constant speed around a banked circular track with a diameter of 136 m . The motion of the car can be describe
galina1969 [7]

Answer:

speed = 44.9m/s

x = 35.5 m,  y = 58.0m

Explanation:

A car on a circular track with constant angular velocity ω can be described by the equation of position r:

\overrightarrow {r(t)} = Rsin(\omega t)\hat{i} + Rcos(\omega t)\hat{j}

The velocity v is given by:

\overrightarrow {v(t)} = \overrightarrow{\frac{dr}{dt}}= \omega Rcos(\omega t)\hat{i} - \omega Rsin(\omega t)\hat{j}

The acceleration a:

\overrightarrow {a(t)} = \overrightarrow{\frac{dv}{dt}}= -\omega^2 Rsin(\omega t)\hat{i} - \omega^2 Rcos(\omega t)\hat{j}

From the given values we get two equations:

-\omega^2 Rsin(\omega t)=-15.4\\-\omega^2 Rcos(\omega t)=-25.4

We also know:

\overrightarrow {a(t)} = -\omega^2 Rsin(\omega t)\hat{i} - \omega^2 Rcos(\omega t)\hat{j}=-\omega^2\overrightarrow{r(t)}

The magnitude of the acceleration a is:

a=\sqrt{(-15.4)^2+(-25.4)^2}=29.7

The magnitude of position r is:

r=R=68m

Plugging in to the equation for a(t):

\overrightarrow {a(t)} =-\omega^2\overrightarrow{r(t)}

and solving for ω:

|\omega|=0.66

Now solve for time t:

\frac{sin(0.66t)}{cos(0.66t)}=tan(0.66t)=\frac{15.4}{25.4}\\t=0.83

Using the calculated values to compute v(t):

\overrightarrow {v(t)}= \omega Rcos(\omega t)\hat{i} - \omega Rsin(\omega t)\hat{j}\\\overrightarrow {v(t)}=44.88cos(0.55)\hai{i}-44.88sin(0.55)\hat{j}\\\overrightarrow {v(t)}=38.3\hat{i}-23.5\hat{j}

The speed of the car is:

\sqrt{38.3^2 + (-23.5)^2} = 44.9

The position r:

\overrightarrow {r(t)} = Rsin(\omega t)\hat{i} + Rcos(\omega t)\hat{j}\\\overrightarrow {r(t)} = 68sin(0.55)\hat{i} + 68cos(0.55)\hat{j}\\\overrightarrow {r(t)} = 35.5{i} + 58.0\hat{j}

5 0
2 years ago
Read 2 more answers
Which of the following are dwarf planets? Check all that apply. Ceres Namaka Eris Charon Haumea Makemake Pluto
kicyunya [14]
Ceres: Yes!
Namaka: No!
Eris: Yes!
Charon: No. (it's a satellite, and dwarf planet's can't be satellites!)
Haumea: Yes!
Makemake: Yes!
Pluto: Yes!

Glad To Help;)
6 0
1 year ago
Read 2 more answers
Whenever important physicists are discussed, Galileo Galilei, Isaac Newton, and Albert Einstein seem get the most attention. How
nordsb [41]
Larry Finkelstein, Norman Fischer, and Cassius Schwartz have been overlooked, in my opinion.
8 0
2 years ago
If electromagnetic radiation a has a lower frequency than electromagnetic radiation b the wavelength of a is
Jobisdone [24]
Inversely proportional to its frequency. If electromagnetic radiation A has a lower frequency than electromagnetic B, then compared to B, the wavelength of A is...? - equal - shorter - longer - exactly half the length of
5 0
2 years ago
A circular coil 17.0 cm in diameter and containing nine loops lies flat on the ground. The Earth's magnetic field at this locati
sergeinik [125]

Answer:

The torque in the coil is  4.9 × 10⁻⁵ N.m  

Explanation:

T = NIABsinθ

Where;

T is the  torque on the coil

N is the number of loops = 9

I is the current = 7.8 A

A is the area of the circular coil = ?

B is the Earth's magnetic field = 5.5 × 10⁻⁵ T

θ is the angle of inclination = 90 - 56 = 34°

Area of the circular coil is calculated as follows;

A = \frac{\pi d^2}{4} \\\\A = \frac{\pi 0.17^2}{4} =0.0227 m^2

T = 9 × 7.8 × 0.0227 × 5.5×10⁻⁵ × sin34°

T = 4.9 × 10⁻⁵ N.m

Therefore, the torque in the coil is  4.9 × 10⁻⁵ N.m

5 0
2 years ago
Other questions:
  • The United States and France both produce sweaters and caps. Suppose that a US worker can produce 50 caps per hour or 1 sweater
    9·2 answers
  • When monochromatic light illuminates a grating with 7000 lines per centimeter, its second order maximum is at 62.4°. what is the
    5·2 answers
  • The acceleration due to gravity on Jupiter is 23.1 m/s2, which is about twice the acceleration due to gravity on Neptune. Which
    7·2 answers
  • A steel projectile is shot horizontally at 20m/s from the top of a 40m tower. How long does it take to hit the ground? How far f
    15·1 answer
  • A 1.7-kg block of wood rests on a rough surface. A 0.011-kg bullet strikes the block with a speed of 670 m/s and embeds itself.
    5·1 answer
  • What is the value of g on the surface of Saturn? Assume M-Saturn = 5.68×10^26 kg and R-Saturn = 5.82×10^7 m.Choose the appropria
    8·1 answer
  • A giant wall clock with diameter d rests vertically on the floor. The minute hand sticks out from the face of the clock, and its
    10·1 answer
  • A man of mass m 1 5 70.0 kg is skating at v1 5 8.00 m/s behind his wife of mass m 2 5 50.0 kg, who is skating at v2 5 4.00 m/s.
    9·1 answer
  • A girl pushes a 1.04 kg book across a table with a horizontal applied force 10 points
    7·1 answer
  • What is the acceleration of a skier that goes from 2.50 m/s to 14.5 m/s while traveling 505 m down a slope?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!