Answer:
speed = 44.9m/s
x = 35.5 m, y = 58.0m
Explanation:
A car on a circular track with constant angular velocity ω can be described by the equation of position r:

The velocity v is given by:

The acceleration a:

From the given values we get two equations:

We also know:

The magnitude of the acceleration a is:

The magnitude of position r is:

Plugging in to the equation for a(t):

and solving for ω:

Now solve for time t:

Using the calculated values to compute v(t):

The speed of the car is:

The position r:

Ceres: Yes!
Namaka: No!
Eris: Yes!
Charon: No. (it's a satellite, and dwarf planet's can't be satellites!)
Haumea: Yes!
Makemake: Yes!
Pluto: Yes!
Glad To Help;)
Larry Finkelstein, Norman Fischer, and Cassius Schwartz have been overlooked, in my opinion.
Inversely proportional to its frequency. If electromagnetic radiation A has a lower frequency than electromagnetic B, then compared to B, the wavelength of A is...? - equal - shorter - longer - exactly half the length of
Answer:
The torque in the coil is 4.9 × 10⁻⁵ N.m
Explanation:
T = NIABsinθ
Where;
T is the torque on the coil
N is the number of loops = 9
I is the current = 7.8 A
A is the area of the circular coil = ?
B is the Earth's magnetic field = 5.5 × 10⁻⁵ T
θ is the angle of inclination = 90 - 56 = 34°
Area of the circular coil is calculated as follows;

T = 9 × 7.8 × 0.0227 × 5.5×10⁻⁵ × sin34°
T = 4.9 × 10⁻⁵ N.m
Therefore, the torque in the coil is 4.9 × 10⁻⁵ N.m