answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grandymaker [24]
2 years ago
5

Some gliders are launched from the ground by means of a winch, which rapidly reels in a towing cable attached to the glider. Wha

t average power must the winch supply in order to accelerate a 181-kg ultralight glider from rest to 25.7 m/s over a horizontal distance of 46.9 m? Assume that friction and air resistance are negligible, and that the tension in the winch cable is constant.
Physics
1 answer:
MArishka [77]2 years ago
6 0

Answer:

P = 1.64 \times 10^4 Watt

Explanation:

Here we know that the glider is accelerated uniformly from rest to final speed of 25.7 m/s in total distance of d = 46.9 m

so we will have

v_f = 25.7 m/s

v_i = 0

d = 46.9

so for uniformly accelerated motion we have

d = \frac{v_f + v_i}{2} t

46.9 = \frac{25.7 + 0}{2}t

t = 3.65 s

now we will find the total work done given as change in kinetic energy

W = \frac{1}{2}mv^2

W = \frac{1}{2}(181)(25.7^2)

W = 5.97 \times 10^4 J

now power is given as

P = \frac{W}{t}

P = \frac{5.97 \times 10^4}{3.65}

P = 1.64 \times 10^4 Watt

You might be interested in
The potential energy of a 40 kg cannon ball is 14000 J. How high was the cannon ball to have this much potential energy?
Fynjy0 [20]
The formula for potential energy is PE=mgh
It can have that high of a potential energy if it's relative height what super high.
7 0
2 years ago
Write a hypothesis about how the height of the cylinder affects the temperature of the water. Use the "if . . . then . . . becau
IgorLugansk [536]

If the mass of the cylinder increases, the temperature of the water increases, because a greater mass means the cylinder has more potential energy that can be converted to thermal energy, increasing the temperature of the water.


4 0
2 years ago
An amount of work W is done on an object of mass m initially at rest, and as result it winds up moving at speed v. Suppose inste
sesenic [268]

Answer:

Explanation:

Given

W amount of work is done on the system such that it acquires v velocity after operation(initial velocity)

According to work energy theorem work done by all the forces is equal to change in kinetic energy of object

W=\frac{1}{2}mv^2---1

where m=mass of object

v=velocity of object

When the object is already have velocity v then the final speed is given by work energy theorem

W=\frac{1}{2}mv_f^2-\frac{1}{2}mv^2-----2

From 1 and 2 we get

\frac{1}{2}mv^2=\frac{1}{2}mv_f^2-\frac{1}{2}mv^2

2\times \frac{1}{2}mv^2=\frac{1}{2}mv_f^2

v_f^2=2v^2

v_f=\sqrt{2}v                

8 0
2 years ago
En el País Vasco los deportistas rurales levantan enormes piedras hasta su hombro. En un concurso , Jose levanta una piedra de 2
Mama L [17]

Answer:

Txomin lifted the stone with greater mass. (Txomin levantó la roca con mayor fuerza).

Explanation:

The sportsman that lifts the stone with a greater mass needs a higher force (El deportista que levanta la piedra con mayor masa necesita una mayor fuerza):

José

F = (200\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)

F = 1961.4\,N

Txomin

F = (220\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)

F = 2157.54\,N

Txomin lifted the stone with greater mass. (Txomin levantó la roca con mayor fuerza).

5 0
2 years ago
A stone is dropped from rest from the top of a cliff into a pond below. If its initial height is 10 m, what is its speed when it
Jobisdone [24]

Answer:

14 m/s

Explanation:

The problem can be solved by using the law of conservation of energy. In fact:

- The mechanical energy of the stone at the top of the cliff is just gravitational potential energy (because the stone is at rest, so its kinetic energy is zero), and it is given by

E=U=mgh (1)

where m is the mass of the stone, g=9.8 m/s^2 is the acceleration due to gravity, and h=10 m is the height of the cliff.

- The mechanical energy of the stone when it hits the water is just kinetic energy (because the height of the stone has become zero, so the gravitational potential energy is zero), so it is

E=K=\frac{1}{2}mv^2 (2)

where v is the speed of the stone when it hits the water.

Since the mechanical energy is conserved, we can equalize (1) and (2), and solving for v we find:

mgh=\frac{1}{2}mv^2\\v=\sqrt{2gh}=\sqrt{2(9.8 m/s^2)(10 m)}=14 m/s

4 0
2 years ago
Other questions:
  • Assume you are driving 20 mph on a straight road. Also, assume that at a speed of 20 miles per hour, it takes 100 feet to stop.
    11·2 answers
  • An arrow is launched upward with an initial speed of 100 meters per second (m/s). The equations above describe the constant-acce
    13·1 answer
  • When a perfume bottle is opened, some liquid changes to gas and the fragrance spreads around the room. Which sentence explains t
    7·1 answer
  • What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade?
    14·1 answer
  • A boy of mass 80 kg slides down a vertical pole, and a frictional force of 480 N acts on him. What is his acceleration as he sli
    5·1 answer
  • A proton moves along the x-axis with vx=1.0×107m/s. As it passes the origin, what are the strength and direction of the magnetic
    11·1 answer
  • What happens when Dr. Hewitt places a current- carrying wire between the poles of the magnet for the first time?
    11·1 answer
  • . A lightbulb with a resistance of 2.9 ohms is operated using a 1.5-volt battery. At what rate is
    6·2 answers
  • 8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s
    7·1 answer
  • A car of mass 600 Kg is moving at 15m/s. Calculate its momentum.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!