answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
2 years ago
4

Electric power is to be generated by installing a hydraulic turbine–generator at a site 110 m below the free surface of a large

water reservoir that can supply water steadily at a rate of 900 kg/s. If the mechanical power output of the turbine is 800 kW and the electric power generation is 750 kW, determine the turbine efficiency and the combined turbine–generator efficiency of this plant. Neglect losses in the pipes.
Physics
1 answer:
gtnhenbr [62]2 years ago
6 0

Answer:

Given that

h = 110 m

Mass flow rate(m') = 900 kg/s

Mechanical power = 800 KW

Power generation = 750 KW

p = m' g h

P= 900 x 10 x 110

P= 990 KW

The turbine efficiency ηt

ηt = 800 /990

ηt = 0.808

Generator efficiency ηg

ηg= 750/800

ηg= 0.93

Combine efficiency η

η = ηt  x ηg

η =0.75

You might be interested in
Upon impact, bicycle helmets compress, thus lowering the potentially dangerous acceleration experienced by the head. A new kind
Dimas [21]

Answer:

acceleration = -15.3g

Explanation:

given data

speed = 6.00 m/s.

thickness = 12

moves the entire = 12.0 cm

solution

we will use here equation that is

v² - u²  = 2 × a × s    ........................1

here v = 0 is the final velocity and u = 6.0 m/s is initial velocity and s= 0.12 m is the distance covered and a is the acceleration

so we put here value and get acceleration

a = \frac{v^2-u^2}{2s}

a = \frac{0^2-6^2}{2\times 0.12}

a = -150 m/s² ( negative sign means it is a deceleration )

and

acceleration in units of g  

a = \frac{-150}{9.8}

a = -15.3 g

6 0
2 years ago
A particle in the first excited state of a one-dimensional infinite potential energy well (with U = 0 inside the well) has an en
nataly862011 [7]

Answer:

The energy of this particle in the ground state is E₁=1.5 eV.

Explanation:

The energy E_{n} of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

                                                    E_{n}=\frac{n^{2}h^{2}}{8mL^{2}}

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

                                                    E_{1}=\frac{h^{2}}{8mL^{2}}            

                                                    E_{2}=\frac{h^{2}}{2mL^{2}}

So we can rewrite the energy in the ground state as:

                                                   E_{1}=\frac{1}{4}(\frac{h^{2}}{2mL^{2}})

                                                      E_{1}=\frac{1}{4} E_{2}

                                                   E_{1}=\frac{1}{4} ( 6.0\ eV)

Finally

                                                    E_{1}=1.5\ eV

                                                   

                                                   

6 0
2 years ago
In a common but dangerous prank, a chair is pulled away as a person is moving downward to sit on it, causing the victim to land
sattari [20]

Answer:

a) Impulse |J|= 219.4 kgm/s

b) Force F = 2672 N

Explanation:

Given

Height of fall h = 0.50 m

Mass M = 70 kg

Period of collision t = 0.082 s

Solution

The final velocity of the person v is zero since the person will come to rest.

The initial velocity of the person can be calculated by using the "law of conservation of energy".

Initial Kinetic energy = Final potential energy

\frac{1}{2} mu^2=mgh\\\\u = \sqrt{2gh} \\\\u = \sqrt{2 \times 9.81 \times 0.50} \\\\u = 3.13 m/s

a) Impulse

J = final momentum - initial momentum

J = mv -mu\\\\J = 0 - (70 \times 3.13)\\\\J = -219.2 kgm/s

Magnitude of impulse

|J| = 219.1 kgm/s

b) Force

F = \frac{J}{t} \\\\F = \frac{219.1}{0.082} \\\\F = 2672 N

4 0
2 years ago
A baggage handler throws a 15 kg suitcase along the floor of an airplane luggage compartment with a speed of 1.2 m/s. The suitca
Hatshy [7]

Answer:

0.0367

Explanation:

The loss in kinetic energy results into work done by friction.

Since kinetic energy is given by

KE=0.5mv^{2}

Work done by friction is given as

W= umgd

Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.

Making u the subject of the formula then we deduce that

u=\frac {v^{2}}{2gd}

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

u=\frac {1.2^{2}}{2*9.81*2}=0.0366972477064\approx 0.0367

Therefore, the coefficient of kinetic friction is approximately 0.0367

7 0
2 years ago
11–8 Consider a heavy car submerged in water in a lake with a flat bottom. The driver’s side door of the car is 1.1 m high and 0
Greeley [361]

Answer:

Explanation:

position of centre of mass of door from surface of water

= 10 + 1.1 / 2

= 10.55 m

Pressure on centre of mass

atmospheric pressure + pressure due to water column

10 ⁵ + hdg

= 10⁵ + 10.55 x 1000 x 9.8

= 2.0339 x 10⁵ Pa

the net force acting on the door (normal to its surface)

= pressure at the centre x area of the door

= .9 x 1.1 x 2.0339 x 10⁵

= 2.01356 x 10⁵ N

pressure centre will be at 10.55 m below the surface.

When the car is filled with air or  it is filled with water , in both the cases pressure centre will lie at the centre of the car .

7 0
2 years ago
Other questions:
  • as your roller coaster climbs to the top of the steepest hill on its track when does the first car have the greatest potential e
    8·1 answer
  • A cue ball has a mass of 0.5 kg. During a game of pool, the cue ball is struck and now has a velocity of 3 . When it strikes a s
    13·2 answers
  • Determine the sign (+ or −) of the torque about the elbow caused by the biceps, τbiceps, the sign of the weight of the forearm,
    5·1 answer
  • Which magnetic property best describes a magnet’s ability to act at a distance? Magnets are dipolar. Magnets attract only certai
    14·2 answers
  • A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
    15·2 answers
  • For tax and accounting purposes, corporations depreciate the value of equipment each year. One method used is called "linear dep
    10·1 answer
  • According to the Revere and Black (2003) article, processes that result in an error probability of 0.000070 should be recognized
    8·1 answer
  • You throw a tennis ball (mass 0.0570 kg) vertically upward. It leaves your hand moving at 15.0 m/s. Air resistance cannot be neg
    6·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
  • An electron with a charge value of 1.6 x 10-19 C is moving in the presence of an electric field of 400 N/C. What force does the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!