Answer :Solid in bottle a is ionic, solid in bottle b is molecular and solid in bottle c is ionic.
Explanation :
Ionic compound is formed when a metal atom donates one or more electrons to a non metal. This results in the formation of a cation ( a positive ion) and an anion ( a negative ion). These ions are bonded to each other by electrostatic attraction.
The intermolecular forces in case of a an ionic compound are very strong.
The melting point of a substance depends on how strongly the molecules are attracted to each other. Stronger the forces, higher is the melting point.
Therefore ionic compounds always have very high melting points.
On the other hand, covalent compounds have weak intermolecular forces. Therefore they have low melting points.
Based on above discussion, we can classify the given compounds as follows.
a) Solid in bottle a is Ionic as it has high melting point.
b) Solid in bottle b is molecular as it has low melting point.
c) Solid in bottle c is Ionic as it has high melting point.
Answer:
c
Explanation:
the cells grow more than the tissue
Answer:
The correct answer is - C27H36N2O10.
Explanation:
C27H36N2O10 is the chemical formula of polyurethane foam which is a linear polymer manufactured by reacting polyols and diisocyanates. Polyurethane foam is used as a thermal insulator.
It used as filling material for various walls such as partition walls inside your house, determines the maintenance of proper insulation. It is not an acidic material that will dissolve easily. It is used not just as wall-filling material but also for sealer and filling in furniture and carpets.
Answer:
Almost all corn oil is expeller-pressed
Explanation:
then solvent-extracted using hexane or 2-methylpentane (isohexane). The solvent is evaporated from the corn oil, recovered, and re-used. After extraction, the corn oil is then refined by degumming and/or alkali treatment, both of which remove phosphatides.Oct 16, 2020
Answer:
The H+ (aq) concentration of the resulting solution is 4.1 mol/dm³
(Option C)
Explanation:
Given;
concentration of HA,
= 6.0mol/dm³
volume of HA,
= 25.0cm³, = 0.025dm³
Concentration of HB,
= 3.0mol/dm³
volume of HB,
= 45.0cm³ = 0.045dm³
To determine the H+ (aq) concentration in mol/dm³ in the resulting solution, we apply concentration formula;

where;
is initial concentration
is initial volume
is final concentration of the solution
is final volume of the solution

Therefore, the H+ (aq) concentration of the resulting solution is 4.1 mol/dm³