answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
2 years ago
7

Does the surrounding air become warm or cool when vapour phase of h2o condenses?explain.

Physics
1 answer:
DiKsa [7]2 years ago
8 0
When the vapor phase of h20 condenses, the surrounding air becomes a little cold since it liberates some amount of heat energy in order to change its phase from the gaseous state (vapor) to the liquid state (droplets of water).
You might be interested in
A 35 g steel ball is held by a ceiling-mounted electromagnet 4.0 m above the floor. A compressed-air cannon sits on the floor, 4
HACTEHA [7]

Answer:

7.9 m/s

Explanation:

When both balls collide, they have spent the same time for their motions.

Motion of steel ball

This is purely under gravity. It is vertical.

Initial velocity, <em>u </em>= 0 m/s

Distance, <em>s</em> = 4.0 m - 1.2 m = 2.8 m

Acceleration, <em>a</em> = g

Using the equation of motion

s = ut+\frac{1}{2}at^2

2.8 \text{ m} = 0+\dfrac{gt^2}{2}

t = \sqrt{\dfrac{5.6}{g}}

Motion of plastic ball

This has two components: a vertical and a horizontal.

The vertical motion is under gravity.

Considering the vertical motion,

Initial velocity, <em>u </em>= ?

Distance, <em>s</em> = 1.2 m

Acceleration, <em>a</em> = -<em>g                   </em> (It is going up)

Using the equation of motion

s = ut+\frac{1}{2}at^2

1.2\text{ m} = ut-\frac{1}{2}gt^2

Substituting the value of <em>t</em> from the previous equation,

1.2\text{ m} = u\sqrt{\dfrac{5.6}{g}}-\dfrac{1}{2}\times g\times\dfrac{5.6}{g}

u\sqrt{\dfrac{5.6}{g}} = 4.0

Taking <em>g</em> = 9.8 m/s²,

u = \dfrac{4.0}{0.756} = 5.29 \text{ m/s}

This is the vertical component of the initial velocity

Considering the horizontal motion which is not accelerated,

horizontal component of the initial velocity is horizontal distance ÷ time.

u_h = \dfrac{4.4\text{ m}}{0.756\text{ s}} = 5.82\text{ m/s}

The initial velocity is

v_i = \sqrt{u^2+u_h^2} = \sqrt{(5.29\text{ m/s})^2+(5.82\text{ m/s})^2} = 7.9 \text{ m/s}

4 0
2 years ago
6) A map in a ship’s log gives directions to the location of a buried treasure. The starting location is an old oak tree. Accord
kiruha [24]

Answer:

Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)

Explanation:

4 0
2 years ago
A high school physics instructor catches one of his students chewing gum in class. He decides to discipline the student by askin
KengaRu [80]

a) 219.8 rad/s

b) 20.0 rad/s^2

c) 2.9 m/s^2

d) 7005 m/s^2

e) Towards the axis of rotation

f) 0 m/s^2

g) 31.9 m/s

Explanation:

a)

The angular velocity of an object in rotation is the rate of change of its angular position, so

\omega=\frac{\theta}{t}

where

\theta is the angular displacement

t is the time elapsed

In this problem, we are told that the maximum angular velocity is

\omega_{max}=35 rev/s

The angle covered during 1 revolution is

\theta=2\pi rad

Therefore, the maximum angular velocity is:

\omega_{max}=35 \cdot 2\pi = 219.8 rad/s

b)

The angular acceleration of an object in rotation is the rate of change of the angular velocity:

\alpha = \frac{\Delta \omega}{t}

where

\Delta \omega is the change in angular velocity

t is the time elapsed

Here we have:

\omega_0 = 0 is the initial angular velocity

\omega_{max}=219.8 rad/s is the final angular velocity

t = 11 s is the time elapsed

Therefore, the angular acceleration is:

\alpha = \frac{219.8-0}{11}=20.0 rad/s^2

c)

For an object in rotation, the acceleration has two components:

- A radial acceleration, called centripetal acceleration, towards the centre of the circle

- A tangential acceleration, tangential to the circle

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

Here we have

\alpha =20.0 rad/s^2

d = 29 cm is the diameter, so the radius is

r = d/2 = 14.5 cm = 0.145 m

So the tangential acceleration is

a_t=(20.0)(0.145)=2.9 m/s^2

d)

The magnitude of the radial (centripetal) acceleration is given by

a_c = \omega^2 r

where

\omega is the angular velocity

r is the radius of the circle

Here we have:

\omega_{max}=219.8 rad/s is the angular velocity when the fan is at full speed

r = 0.145 m is the distance of the gum from the centre of the circle

Therefore, the radial acceleration is

a_c=(219.8)^2(0.145)=7005 m/s^2

e)

The direction of the centripetal acceleration in a rotational motion is always towards the centre of the axis of rotation.

Therefore also in this case, the direction of the centripetal acceleration is towards the axis of rotation of the fan.

f)

The magnitude of the tangential acceleration of the fan at any moment is given by

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

When the fan is rotating at full speed, we have:

\alpha=0, since the fan is no longer accelerating, because the angular velocity is no longer changing

r = 0.145 m

Therefore, the tangential acceleration when the fan is at full speed is

a_t=(0)(0.145)=0 m/s^2

g)

The linear speed of an object in rotational motion is related to the angular velocity by the formula:

v=\omega r

where

v is the linear speed

\omega is the angular velocity

r is the radius

When the fan is rotating at maximum angular velocity, we have:

\omega=219.8 rad/s

r = 0.145 m

Therefore, the linear speed of the gum as it is un-stucked from the fan will be:

v=(219.8)(0.145)=31.9 m/s

7 0
2 years ago
Roberto creates an animation titled “Flying through an Atom.” The animation makes it seem as if the viewer passes all the way th
vladimir2022 [97]
<span>The viewer travels through the electron cloud, then the nucleus, and then the electron cloud again.</span>
8 0
2 years ago
Read 2 more answers
If 56 grams of carbon monoxide burns in oxygen to produce 88 grams of carbon dioxide, the mass of oxygen involved in the reactio
pentagon [3]

Answer : The mass of oxygen involved in the reaction is, 32 grams.

Explanation : Given,

Mass of carbon monoxide = 56 g

Mass of carbon dioxide = 88 g

Molar mass of carbon monoxide (CO) = 28 g/mole

Molar mass of oxygen (O_2) = 32 g/mole

First we have to calculate the moles of carbon monoxide.

\text{Moles of CO}=\frac{\text{Mass of CO}}{\text{Molar mass of CO}}=\frac{56g}{28g/mole}=2moles

Now we have to calculate the moles of oxygen gas.

The balanced chemical reaction will be,

2CO+O_2\rightarrow 3CO_2

From the balanced chemical reaction, we conclude that

2 moles of CO react with 1 mole of O_2

So, the moles of O_2 = 1 mole

Now we have to calculate the mass of oxygen.

\text{Mass of }O_2=\text{Moles of }O_2\times \text{Molar mass of }O_2

\text{Mass of }O_2=1mole\times 32g/mole=32g

Therefore, the mass of oxygen involved in the reaction is, 32 grams.

5 0
2 years ago
Other questions:
  • A scientist measures the growth of a bamboo plant over time. The table below shows the results.
    5·2 answers
  • Find the time t1 it takes to accelerate the flywheel to ω1 if the angular acceleration is α. express your answer in terms of ω1
    14·2 answers
  • Use the periodic table and your knowledge of isotopes to complete these statements.
    15·2 answers
  • The energy stored in oil come from the sun. Describe how energy from the sun became stored in oil
    7·2 answers
  • The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob
    8·1 answer
  • Two rockets are flying in the same direction and are side by side at the instant their retrorockets fire. Rocket A has an initia
    8·1 answer
  • What determines whether the equilibrium temperature of a mixture of two amounts of water will be closer to the initially cooler
    5·1 answer
  • You slip a wrench over a bolt. Taking the origin at the bolt, the other end of the wrench is at x=18cm, y=5.5cm. You apply a for
    12·1 answer
  • The power that a student generates when walking at a steady pace of vw is the same as when the student is riding a bike at vb =
    7·1 answer
  • How to find id in this app. ​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!