answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iris [78.8K]
1 year ago
13

A heavy flywheel is accelerated (rotationally) by a motor that provides constant torque and therefore a constant angular acceler

ation α. The flywheel is assumed to be at rest at time t=0 in Parts A and B of this problem.
Part A

Find the time t1 it takes to accelerate the flywheel to ω1 if the angular acceleration is α.

Express your answer in terms of ω1 and α.

Part B

Find the angle θ1 through which the flywheel will have turned during the time it takes for it to accelerate from rest up to angular velocity ω1.

Express your answer in terms of some or all of the following: ω1, α, and t1.

Part C

Assume that the motor has accelerated the wheel up to an angular velocity ω1 with angular acceleration α in time t1. At this point, the motor is turned off and a brake is applied that decelerates the wheel with a constant angular acceleration of −5α. Find t2, the time it will take the wheel to stop after the brake is applied (that is, the time for the wheel to reach zero angular velocity).

Express your answer in terms of some or all of the following: ω1, α, and t1.
Physics
1 answer:
aleksandrvk [35]1 year ago
6 0

Answer:

Part a)

t_1 = \frac{\omega_1}{\alpha}

Part b)

\theta = \frac{1}{2}\alpha t_1^2

Part c)

t = \frac{t_1}{5}

Explanation:

Part a)

As we know that it is having constant torque so here the time taken by it to accelerate is given as

\omega_f = \omega_i + \alpha t

\omega_1 = 0 + \alpha t_1

t_1 = \frac{\omega_1}{\alpha}

Part b)

angular displacement is given as

\theta = \omega_i t_1 + \frac{1}{2}(\alpha) t_1^2

\theta = 0 + \frac{1}{2}\alpha t_1^2

\theta = \frac{1}{2}\alpha t_1^2

Part c)

As we know that the angular deceleration produced by the brakes is given as

\alpha_d = - 5\alpha

now we have

\omega_f = \omega _i + \alpha t

0 = \omega_1 - 5 \alpha_1 t

t = \frac{\omega_1}{5 \alpha}

As we know that

t_1 = \frac{\omega_1}{\alpha}

so we have

t = \frac{t_1}{5}

You might be interested in
A metal disk weighing 1 N is resting on an index card that is balanced on top of a glass. When the index card is quickly pulled
Burka [1]
Answer: D



Step by step explanation:
8 0
2 years ago
Read 2 more answers
A cart is driven by a large propeller or fan, which can accelerate or decelerate the cart. The cart starts out at the position x
mash [69]

Answer:

The acceleration of the cart is 1.0 m\s^2 in the negative direction.

Explanation:

Using the equation of motion:

Vf^2 = Vi^2 + 2*a*x

2*a*x = Vf^2 - Vi^2

a = (Vf^2 - Vi^2)/ 2*x

Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.

Let x = Xf -Xi

Where Xf is the final position of the cart and Xi the initial position of the cart.

x = 12.5 - 0

x = 12.5

The cart comes to a stop before changing direction

Vf = 0 m/s

a = (0^2 - 5^2)/ 2*12.5

a = - 1 m/s^2

The cart is decelerating

Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.

5 0
1 year ago
A man weighing 750 n and a woman weighing 500 n have the same momentum. what is the ratio of the man's kinetic energy km to that
miss Akunina [59]
Because weight W = M g, the ratio of weights equals the ratio of masses.

(M_m g)/ (M_w g) = [ (p^2 Man )/ (2 K_man)] / [ (p^2 Woman )/ (2 K_woman)

but p's are equal, so

K_m/K_m = (M_w g)/(M_m g) = W_woman / W_man = 450/680 = 0.662
4 0
1 year ago
What is the net force acting on the buggy?<br> N<br> The net force is pointing to the...
blagie [28]

Answer:

390, right

Explanation:

5 0
1 year ago
Read 2 more answers
Centripetal force Fc acts on a car going around a curve. If the speed of the car were twice as great, the magnitude of the centr
kondaur [170]

Answer:

We need 4 times more force to keep the car in circular motion if the velocity gets double.

Explanation:

Lets take the mass of the car = m

The radius of the arc = r

F=\frac{m\times v^2}{r}

Given that speed of the car gets double ,v' = 2 v

Then the force on the car = F'

F'=\frac{m\times v'^2}{r}  ( radius of the arc is constant)

F'=\frac{m\times (2v)^2}{r}

F'=4\times \frac{m\times v^2}{r}

We know that F=\frac{m\times v^2}{r}

Therefore F' = 4 F

So we can say that we need 4 times more force to keep the car in circular motion if the velocity gets double.

6 0
1 year ago
Other questions:
  • A 2 kg object released from rest at the top of a tall cliff reaches a terminal speed of 37.5 m/s after it has fallen a height of
    13·1 answer
  • What would be the kinetic energy k2q of charge 2q at a very large distance from the other charges? express your answer in terms
    5·1 answer
  • While riding a multispeed bicycle, the rider can select the radius of the rear sprocket that is fixed to the rear axle. The fron
    7·1 answer
  • A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C.
    11·1 answer
  • A small metallic bob is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizonta
    6·1 answer
  • na drewnianej podłodze znajduje się skrzynka o masie 18 kg . W pewnym momencie pod wpływem siły skierowanej poziomo skrzynia zac
    7·1 answer
  • An excited hydrogen atom releases an electromagnetic wave to return to its normal state. You use your futuristic dual electric/m
    11·1 answer
  • A pilot in a small plane encounters shifting winds. He flies 26.0 km northeast, then 45.0 km due north. From this point, he flie
    11·1 answer
  • The image shows one complete cycle of a mass on a spring in simple harmonic motion. An illustration of a mass on a vertical spri
    13·1 answer
  • On a straight road (taken to be in the +x direction) you drive for an hour at 50 km per hour, then quickly speed up to 90 km per
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!