answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
2 years ago
11

Centripetal force Fc acts on a car going around a curve. If the speed of the car were twice as great, the magnitude of the centr

ipetal force necessary to keep the car moving in the same path would be
Physics
1 answer:
kondaur [170]2 years ago
6 0

Answer:

We need 4 times more force to keep the car in circular motion if the velocity gets double.

Explanation:

Lets take the mass of the car = m

The radius of the arc = r

F=\frac{m\times v^2}{r}

Given that speed of the car gets double ,v' = 2 v

Then the force on the car = F'

F'=\frac{m\times v'^2}{r}  ( radius of the arc is constant)

F'=\frac{m\times (2v)^2}{r}

F'=4\times \frac{m\times v^2}{r}

We know that F=\frac{m\times v^2}{r}

Therefore F' = 4 F

So we can say that we need 4 times more force to keep the car in circular motion if the velocity gets double.

You might be interested in
Charge q1 is distance r from a positive point charge Q. Charge q2=q1/3 is distance 2r from Q. What is the ratio U1/U2 of their p
worty [1.4K]

We have that The ratio U1/U2 of their potential energies due to their interactions with Q is

  • U1/U2=6
  • U1/U2=6

From the question we are told that

Question 1

Charge q1 is distance r from a positive point charge Q.

Question 2

Charge q2=q1/3 is distance 2r from Q.

Charge q1 is distance s from the negative plate of a parallel-plate capacitor.

Charge q2=q1/3 is distance 2s from the negative plate.

Generally the equation for the potential energy  is mathematically given as

U=\frac{-k*qQ}{r}

Therefore

The Equations of U1 and U2 is

For U1

U1=\frac{-k*q_1Q}{r}

For U2

U2=\frac{-k*q_1Q}{3*2r}

Since

U is a function of q and  q2=q1/3

Therefore

U1/U2=6

For Question 2

For U1

U1=\frac{-k*q_1Q}{s}\\\\For U2\\\\U2=\frac{-k*q_1Q}{3*2r}

Therefore

U1/U2=6

For more information on this visit

brainly.com/question/23379286?referrer=searchResults

7 0
1 year ago
Determine a formula for the maximum height h that a rocket will reach if launched vertically from the Earth's surface with speed
olga55 [171]

Initially, the energies are:

U_{i}=-\frac{G M_{\varepsilon} m}{r_{e}} \\
=K_{i}=\frac{1}{2} m v_{0}^{2}

At final point, the energies are:

U_{f}=-\frac{G M_{\varepsilon} m}{r_{e}+h} \\
K_{f}=\frac{1}{2} m(0)^{2}=0

Using conservation law of energy,

-\frac{G M_{e} m}{r_{e}}+\frac{1}{2} m v_{0}^{2} &=-\frac{G M_{e} m}{r_{\varepsilon}+h} \\
-\frac{G M_{e}}{r_{e}}+\frac{v_{0}^{2}}{2} &=-\frac{G M_{e}}{r_{e}+h} \\
\frac{-2 G M_{e}+r_{e} v_{0}^{2}}{2 r_{e}} &=-\frac{G M_{e}}{r_{e}+h} \\
\frac{r_{e}+h}{G M_{e}} &=\frac{2 r_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}

The equation is further simplified as:

r_{e}+h &=\left(\frac{2 r_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}\right) G M_{e} \\
h &=\frac{2 r_{e} G M_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}-r_{e} \\
&=\frac{2 r_{e} G M_{e}-2 r_{e} G M_{e}+r_{e}^{2} v_{0}^{2}}{2 G M_{e}-r_{e} v_{0}^{2}} \\
& h=\frac{r_{e}^{2} v_{0}^{2}}{2 G M_{e}-r_{e} v_{0}^{2}}

7 0
1 year ago
In March 2006, two small satellites were discovered orbiting Pluto, one at a distance of 48,000 km and the other at 64,000 km. P
tatiyna

Answer:

Time period for first satellites 24.46 days and for second satellites 37.67 days

Explanation:

Given :

Distance of first satellites r_{sat1} = 48000 \times 10^{3} m

Distance of second satellites r _{sat2} = 64000 \times 10^{3} m

Distance of charon r_{c} = 19600 \times 10^{3} m

Time period of charon T_{c} = 6.39 days

From the kepler's third law,

Square of the time period is proportional to the cube of the semi major axis.

   T^{2} = r^{3}

   \frac{T}{r^{\frac{3}{2} } } = constant

For first satellites,

  \frac{T_{c} }{r_{c} ^{\frac{3}{2} }  }  = \frac{T_{sat1} }{r_{sat1} ^{\frac{3}{2} }  }

{T_{sat1} } = 6.39 \times \frac{(48000 \times 10^{3} )^{\frac{3}{2} } }{(19600\times 10^{3} )^{\frac{3}{2} }}

T_{sat1} = 24.46 days

For second satellites,

   \frac{T_{c} }{r_{c} ^{\frac{3}{2} }  }  = \frac{T_{sat2} }{r_{sat2} ^{\frac{3}{2} }  }

{T_{sat2} } = 6.39 \times \frac{(64000 \times 10^{3} )^{\frac{3}{2} } }{(19600\times 10^{3} )^{\frac{3}{2} }}

T_{sat2} = 37.67 days

Therefore, time period for first satellites = 24.46 days and for second satellites 37.67 days

8 0
2 years ago
Three balls are in water. Ball 1 floats, with half of it exposed above the water level. Ball 2, with a density less than the den
Ymorist [56]

Answer:

The magnitude of buoyancy force is equal to that of ball's weight.

Explanation:

Ball 1 is floating on water. Weight of ball 1 is Fg=m1g  is acting vertically downward

Force of buoyancy FB = ρVdisg is acting vertically upward.

Net force acting on the ball is zero, FB=Fg

Answer

The magnitude of buoyancy force is equal to that of ball's weight.

4 0
2 years ago
Read 2 more answers
Kim has a metal casting company which makes commemorative coins. She has 0.12 cubic meters of silver which she needs to make int
a_sh-v [17]

Answer:

The coin has a diameter of 2.67 cm

Explanation:

First, we need to find the volume of each coin by dividing the total volume of silver by the number of coins. We have also to do a conversion of units in terms of centimeters as follows:

V=0.12 m^3\times (\frac{100cm}{1m})^3=12000\ cm^3\\V_c=\frac{120000\ cm^3}{1.07\times10^5}= 1.121 cm^3

Then, we define the coin as a tiny cilinder to determine its diameter. In that order we use the cilinder's volumen equation as follows:

V=\pi r^2h\\r = \sqrt \frac{V}{\pi h}= \sqrt\frac{1.121 cm^3}{\pi \times 0.2cm}=1.336 cm

Finally, we know that the diameter is twice the radius, therefore the diameter of each coin is 2.67 cm.

5 0
2 years ago
Other questions:
  • A reflecting telescope is built with a 20-cm-diameter mirror having a 1.00 m focal length. it is used with a 10× eyepiece.
    12·1 answer
  • Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
    8·2 answers
  • The speed of light of a ray of light traveling through a distance having an absolute index of refraction of 1.1 is?
    7·1 answer
  • Nitrogen (n2) gas within a piston–cylinder assembly undergoes a compression from p1 = 20 bar, v1 = 0.5 m3 to a state where v2 =
    8·2 answers
  • A race car makes one lap around a track of radius 50 m in 9.0 s. What is the average velocity? *
    5·1 answer
  • How many electrons does 1.00 kg of water contain?
    9·1 answer
  • A rod 14.0 cm long is uniformly charged and has a total charge of -22.0 μC. Determine the magnitude and direction of the net ele
    7·1 answer
  • Tyson throws a shot put ball weighing 7.26 kg. At a height of 2.1 m above the ground, the mechanical energy of the ball is 172.1
    15·2 answers
  • The planet Neptune orbits the Sun. Its orbital radius is 30.130.130, point, 1 astronomical units (\text{AU})(AU)left parenthesis
    10·1 answer
  • A basketball player makes a jump shot. The 0.600-kg ball is released at a height of 2.01 m above the floor with a speed of 7.26
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!