answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
2 years ago
11

Centripetal force Fc acts on a car going around a curve. If the speed of the car were twice as great, the magnitude of the centr

ipetal force necessary to keep the car moving in the same path would be
Physics
1 answer:
kondaur [170]2 years ago
6 0

Answer:

We need 4 times more force to keep the car in circular motion if the velocity gets double.

Explanation:

Lets take the mass of the car = m

The radius of the arc = r

F=\frac{m\times v^2}{r}

Given that speed of the car gets double ,v' = 2 v

Then the force on the car = F'

F'=\frac{m\times v'^2}{r}  ( radius of the arc is constant)

F'=\frac{m\times (2v)^2}{r}

F'=4\times \frac{m\times v^2}{r}

We know that F=\frac{m\times v^2}{r}

Therefore F' = 4 F

So we can say that we need 4 times more force to keep the car in circular motion if the velocity gets double.

You might be interested in
A rectangular beam 10 cm wide, is subjected to a maximum shear force of 50000 N, the corresponding maximum shear stress being 3
nika2105 [10]

Answer:

Option B is the correct answer.

Explanation:

Shear stress is the ratio of shear force to area.

We have

       Shear stress = 3 N/mm² = 3 x 10⁶ N/m²

       Area = Area of rectangle = 10 x 10⁻² x d = 0.1d

       Shear force = 50000 N

Substituting

        \texttt{Shear stress}=\frac{\texttt{Shear force}}{\texttt{Area}}\\\\3\times 10^6=\frac{50000}{0.1d}\\\\d=0.1667m=16.67cm

Width of beam = 16.67 cm

Option B is the correct answer.

6 0
2 years ago
In the metric system, the appropriate unit for weight is the _____. gram newton newton/cm2 gram/cm3
Archy [21]

Answer:

Newton

Explanation:

The earth attracts every body towards its centre. The force with which the earth attracts any body towards its centre, is called its weight.

It is a vector quantity.

It always acts towards the centre of earth.

The SI unit of Newton.

4 0
2 years ago
answers Collision derivation problem. If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the in
Natasha2012 [34]

Answer:

4.8967m

Explanation:

Given the following data;

M = 0.2kg

∆p = 0.58kgm/s

S(i) = 2.25m

Ratio h/w = 12/75

Firstly, we use conservation of momentum to find the velocity

Therefore, ∆p = MV

0.58kgm/s = 0.2V

V = 0.58/2

V = 2.9m/s

Then, we can use the conservation of energy to solve for maximum height the car can go

E(i) = E(f)

1/2mV² = mgh

Mass cancels out

1/2V² = gh

h = 1/2V²/g = V²/2g

h = (2.9)²/2(9.8)

h = 8.41/19.6 = 0.429m

Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.

h/w = 0.429/x

X = 0.429×75/12

X = 2.6815

Therefore, by Pythagoreans rule

S(ramp) = √2.68125²+0.429²

S(ramp) = 2.64671

Finally, S(t) = S(ramp) + S(i)

= 2.64671+2.25

= 4.8967m

3 0
2 years ago
A man pushes a drum of oil 10kg up an incline OA. If OA is 5m and AB is 3m, what is the potential energy of the drum at A.​
Paladinen [302]

Answer:

294 Joules

Explanation:

From the question;

  • Mass of the drum is 10 kg
  • The length of inclined surface, OA is 5 m
  • The final height of the drum on the plane AB is 3 m

We are required to determine the potential energy of the drum at A

We know that potential energy is given by the formula;

Potential energy = mgh

where m is the mass, g is the gravitational pull and h is the height

Taking g as 9.8 N/kg

Then;

Potential energy = 10 kg × 9.8 N/kg × 3 m

                            = 294 Joules

Thus, the potential energy of the drum at A is 294 Joules

6 0
2 years ago
Read 2 more answers
Two satellites revolve around the Earth. Satellite A has mass m and has an orbit of radius r. Satellite B has mass 6m and an orb
melomori [17]

Answer:

aaaaa

Explanation:

M = Mass of the Earth

m = Mass of satellite

r = Radius of satellite

G = Gravitational constant

F=G\frac{Mm}{r^2}

F=G\frac{M6m}{r_b^2}

G\frac{Mm}{r^2}=G\frac{M6m}{r_b^2}\\\Rightarrow \frac{1}{r^2}=\frac{6}{r_b^2}\\\Rightarrow \frac{r_b^2}{r^2}=6\\\Rightarrow \frac{r_b}{r}=\sqrt{6}\\\Rightarrow r_b=2.44948r

r_b=2.44948r

8 0
2 years ago
Other questions:
  • A glider moving with a speed of 200 kilometers/hour experiences a cross wind of 30 kilometers/hour. What is the resultant speed
    5·1 answer
  • Nutrition, caregiver responsiveness, and learning opportunities are all __________ influences on maturation. A. environmental B.
    13·2 answers
  • Which of the following four circuit diagrams best represents the experiment described in this problem?
    12·1 answer
  • A solenoid with an air core has a magnetic field pointing along its axis in the positive x direction. This solenoid is then fill
    9·1 answer
  • After a 60-kg person steps from a boat onto the shore, the boat moves away with a speed of 0.60 m/s with respect to the shore. I
    13·1 answer
  • A ball is thrown upward from the top of a 25.0 m tall building. The ball’s initial speed is 12.0 m/sec. At the same instant, a p
    10·1 answer
  • A tank contains 100 gal of water and 50 oz of salt.water containing a salt concentration of 1 4 (1 1 2 sin t) oz/gal flows into
    7·1 answer
  • A child is playing with a spring toy, first stretching and then compressing it.
    10·1 answer
  • A student wants to investigate the motion of a ball by conducting two different experiments, as shown in Figure 1 and Figure 2 a
    7·1 answer
  • If a force of 26 N is exerted on two balls, one with a mass of 0.52 kg and the other with a mass of 0.78 kg, the ball with the m
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!