answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliya0001 [1]
2 years ago
5

The pupil of the human eye can vary in diameter from 2.00 mm in bright light to 8.00 mm in dim light. The eye has a focal length

of about 25 mm, and the visible spectrum extends from 390 nm (violet) to 750 nm (red). Note that the light-sensitive cells on the retina have radii ranging from 0.75 μm to 3.0 μm.
Physics
1 answer:
Zarrin [17]2 years ago
7 0

The indicated data are of clear understanding for the development of Airy's theory. In optics this phenomenon is described as an optical phenomenon in which The Light, due to its undulatory nature, tends to diffract when it passes through a circular opening.

The formula used for the radius of the Airy disk is given by,

y_r=1.22\frac{\lambda f}{d}

Where,

y_r = Range of the radius

\lambda = wavelength

f= focal length

Our values are given by,

State 1:

d=2.00mm = 2*10^{-3}m

f= 25mm = 25*10^{-3}m

\lambda = 750nm = 750*10^{-9}m

State 2:

d=8.00mm = 8*10^{-3}m

f= 25mm = 25*10^{-3}m

\lambda = 390nm = 390*10^{-9}

Replacing in the first equation we have:

y_{r1} = 1.22\frac{(750*10^{-9})(25*10^{-3})}{2*10^{-3}}

y_{r1}= 11.4\mu m

And also for,

y_{r2} =1.22\frac{(390*10^{-9})(25*10^{-3})}{8*10^{-3}}

y_{r2} = 1.49\mu m

Therefor, the airy disk radius ranges from 1.49\mu m to 11.4\mu m

You might be interested in
A normal polarity magnet moves toward a stationary coil at 20 cm/s, and induces a maximum current of –8 mA. Which scenarios woul
maksim [4K]

<em>If the distance between the two objects is the same, then;</em>

Both the magnet and the coil moving toward each other at 10 cm/s each

A reversed polarity magnet moving away from the coil at 20 cm/s

<u>Calculate current that produces a magnetic field, and use the right hand rule 2, to determine the direction of current or the direction of magnetic field loops. </u>

6 0
2 years ago
Read 2 more answers
Which force changes the lithosphere by building up the surface?
Sunny_sXe [5.5K]

Answer:

volcanic eruptions

Explanation:

The volcanic eruptions are the ones that manage to cause changes to the lithosphere by building up new material on the surface. Through the volcanic eruptions we have release of pyroclastic material on the surface, and more importantly and in much higher amount lava flows. The lava flows quickly cool off on the surface on the Earth, and as they do they pile up new layers of igneous rocks, thus new crust on the surface of the Earth, causing changes on the lithosphere and shaping it for the foreseeable future.

4 0
2 years ago
A boy on a bicycle approaches a brick wall as he sounds his horn at a frequency 400 hz. the sound he hears reflected back from t
Mashutka [201]
As the question is about changing in frequency of a wave for an observer who is moving relative to the wave source, the concept that should come to our minds is "Doppler's effect."

Now the general formula of the Doppler's effect is:
f = (\frac{g + v_{r}}{g + v_{s}})f_{o} -- (A)

Note: We do not need to worry about the signs, as everything is moving towards each other. If something/somebody were moving away, we would have the negative sign. However, in this problem it is not the issue.

Where,
g = Speed of sound = 340m/s.
v_{r} = Velocity of the receiver/observer relative to the medium = ?.
v_{s} = Velocity of the source with respect to medium = 0 m/s.
f_{o} =  Frequency emitted from source = 400 Hz.
f = Observed frequency = 408Hz.

Plug-in the above values in the equation (A), you would get:

408 = ( \frac{340 + v_{r}}{340 + 0})*400

\frac{408}{400} =  \frac{340 + v_{r}}{340}

Solving above would give you,
v_{r} = 6.8 m/s

The correct answer = 6.8m/s



7 0
2 years ago
A point charge q1 = 4.50 nC is located on the x-axis at x = 1.95 m , and a second point charge q2 = -6.80 nC is on the y-axis at
Vinvika [58]

Answer:

Explanation:

One charge is situated at x = 1.95 m . Second charge is situated at y = 1.00 m

These two charges are situated outside sphere as it has radius of .365 m with center at origin. So charge inside sphere = zero.

Applying Gauss's theorem

Flux through spherical surface = charge inside sphere / ε₀

= 0 / ε₀

= 0 Ans .

3 0
2 years ago
A book rests on the shelf of a bookcase. The reaction force to the force of gravity acting on the book is 1. The force of the sh
Hoochie [10]

Answer:

1. The force of the shelf holding the book up.

Explanation:

The free body diagram of the book is as follows:

1 - The weight of the book towards downwards

2 - The normal force that the shelf exerts on the book towards upwards.

Since the book is at rest, these two forces are equal to each other and according to Newton's Third Law the reaction force to the force of gravity is equal but opposite to the weight of the book. This reaction force is the one that holds the book up on the shelf.

6 0
2 years ago
Read 2 more answers
Other questions:
  • A soccer player with a mass of 60 kg is traveling at 8 m/s when he completes a corner kick on a 0.45 kg soccer ball. The soccer
    13·2 answers
  • A ball is thrown horizontally at a height of 2.2 meters at a velocity of 65m/s off a cliff. Assume no air resistance. How long u
    8·1 answer
  • Which of the following statements are true of an object in orbit around Earth? (Select all that apply.) The gravity force on the
    8·1 answer
  • A student, along with her backpack on the floor next to her, are in an elevator that is accelerating upward with acceleration a.
    12·1 answer
  • Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 72.0° between them. Wha
    6·1 answer
  • In the sum of 54.34 and 45.66, the number of significant figure for the<br>answer is​
    5·1 answer
  • Whennes
    15·1 answer
  • On average, both arms and hands together account for 13% of a person's mass, while the head is 7.0% and the trunk and legs accou
    8·1 answer
  • The velocity of a passenger relative to a boat is -vpb. The velocity of the boat relative to the river it is moving on is vbr. T
    7·1 answer
  • A car has a crumple zone that is 0.80 m (80 cm) long. In this car, the distance from the dummy to the steering wheel is 0.50 m.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!