Answer:
(a) 0.0178 Ω
(b) 3.4 A
(c) 6.4 x 10⁵ A/m²
(d) 9.01 x 10⁻³ V/m
Explanation:
(a)
σ = Electrical conductivity = 7.1 x 10⁷ Ω-m⁻¹
d = diameter of the wire = 2.6 mm = 2.6 x 10⁻³ m
Area of cross-section of the wire is given as
A = (0.25) π d²
A = (0.25) (3.14) (2.6 x 10⁻³)²
A = 5.3 x 10⁻⁶ m²
L = length of the wire = 6.7 m
Resistance of the wire is given as


R = 0.0178 Ω
(b)
V = potential drop across the ends of wire = 0.060 volts
i = current flowing in the wire
Using ohm's law, current flowing is given as


i = 3.4 A
(c)
Current density is given as


J = 6.4 x 10⁵ A/m²
(d)
Magnitude of electric field is given as


E = 9.01 x 10⁻³ V/m
Answer:
The condition necessary for the person to be able to remain stationary in mid-air is that there must be an upward force also referred to as THRUST
Explanation:
Thrust in Physics is defined as the force that propels, forces or pushes the mass of a certain object in a specified or particular direction.
Thrust can defined in the terms of a Jet pack can be defined as the force that is required to propel the mass of a person in an upward direction.
Based on the diagram that we have been shown the question, we can see that water is the fuel used to proper the user or person upwards hence, the jet pack used in the question is an HydroJet pack
The condition necessary for the person to be able to remain stationary in mid-air is that the propelling force called the thrust must be upwards such that it can overcome these 4 things:
a) Gravitational force
b) Mass of the jet pack user
c) Mass of the jet pack itself
d) The water which serves as fuel for the jet pack.
To help you I need to assume a wavelength and then calculate the momentum.
The momentum equation for photons is:
p = h / λ , this is the division of Plank's constant by the wavelength.
Assuming λ = 656 nm = 656 * 10 ^ - 9 m, which is the wavelength calcuated in a previous problem, you get:
p = (6.63 * 10 ^-34 ) / (656 * 10 ^ -9) kg * m/s
p = 1.01067 * 10^ - 27 kg*m/s which must be rounded to three significant figures.
With that, p = 1.01 * 10 ^ -27 kg*m/s
The answers are rounded to only 2 significan figures, so our number rounded to 2 significan figures is 1.0 * 10 ^ - 27 kg*m/s
So, assuming the wavelength λ = 656 nm, the answer is the first option: 1.0*10^-27 kg*m/s.
Answer:
As block 1 moves from point A to point B, the work done by gravity on block 2 is equal to the change in the kinetic energy of the two-block system.
Explanation:
As block 2 goes down , work is done by gravity on block 2 . This is converted
into kinetic energy of block 1 and block 2 . Work done by gravity is mgh which can be measured easily . kinetic energy of both the blocks can also be measured.