Answer:
3.6 m
Explanation:
let x = horizontal distance between emily and allison should be for allison to catch the ball
Find horizontal speed of the ball
vx = 12 sin 30 = 12 x 0.5 = 6 m/s
To find time taken, we will use vertical values of the ball motion
Initial velocity in vertical direction
u = 12 cos 30 = 10.392 m/s
let a = g = 9.8m/s2
Use equation of motion
s = ut +1/2at^2
s = vertical distance = 8
8 = (10.392)t + (1/2)(9.8)t^2
8 = (10.392)t + (4.9)t^2
4.9t^2 + 10.392t - 8 = 0
Using formula of quadratic or calculator, we'll find
t = 0.6 and t = -2.72
We pick t=0.6s since it's not logical time in negative
Assuming no air resistance or external forces, the ball will move 6m/s horizontally. Hence using the formula of speed
speed vx = distance x / time
x = (vx)(t)
= 6 x 0.6
= 3.6 m
When plane is going towards Halifax the speed of wind is in the direction of fly
so overall the net speed of the plane will increase
while when he is on the way back the air is opposite to flight so net speed will decrease
now the total time of the journey is 13 hours
out of this 2 hours he spent in mathematics talk
so total time of the fly is 13 - 2 = 11 hours
now we have formula to find the time to travel to Halinex

time taken to reach back

now we have total time


here d= 3000 miles



solving above quadratic equation we will have

so speed of plane will be 550 mph
Answer
The rate at which the magnetic field is changing is
Explanation
From the question we are told that
The electric field strength is 
The radius is 
The rate of change of the magnetic field is mathematically represented as

Where
is change of a unit length

Where A is the area which is mathematically represented as

So
where L is the circumference of the circle which is mathematically represented as

So
![E (2 \pi r ) = (\pi r^2 ) [\frac{dB}{dt} ]](https://tex.z-dn.net/?f=E%20%282%20%5Cpi%20r%20%29%20%3D%20%20%28%5Cpi%20r%5E2%20%29%20%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D)
![E = \frac{r}{2} [\frac{dB}{dt} ]](https://tex.z-dn.net/?f=E%20%20%3D%20%20%20%5Cfrac%7Br%7D%7B2%7D%20%20%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D)
![[\frac{dB}{dt} ] = \frac{E}{ \frac{r}{2} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D%20%3D%20%5Cfrac%7BE%7D%7B%20%5Cfrac%7Br%7D%7B2%7D%20%7D)
substituting values
![[\frac{dB}{dt} ] = \frac{3.5 *10^{-3}}{ \frac{15}{2} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D%20%3D%20%5Cfrac%7B3.5%20%2A10%5E%7B-3%7D%7D%7B%20%5Cfrac%7B15%7D%7B2%7D%20%7D)
Answer:
The torque on the wrench is 4.188 Nm
Explanation:
Let r = xi + yj where is the distance of the applied force to the origin.
Since x = 18 cm = 0.18 cm and y = 5.5 cm = 0.055 cm,
r = 0.18i + 0.055j
The applied force f = 88i - 23j
The torque τ = r × F
So, τ = r × F = (0.18i + 0.055j) × (88i - 23j) = 0.18i × 88i + 0.18i × -23j + 0.055j × 88i + 0.055j × -23j
= (0.18 × 88)i × i + (0.18 × -23)i × j + (0.055 × 88)j × i + (0.055 × -22)j × j
= (0.18 × 88) × 0 + (0.18 × -23) × k + (0.055 × 88) × (-k) + (0.055 × -22) × 0 since i × i = 0, j × j = 0, i × j = k and j × i = -k
= 0 - 4.14k + 0.0484(-k) + 0
= -4.14k - 0.0484k
= -4.1884k Nm
≅ -4.188k Nm
So, the torque on the wrench is 4.188 Nm