answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Len [333]
2 years ago
8

Choose the aqueous solution below with the lowest freezing point. These are all solutions of nonvolatile solutes and you should

assume ideal van't Hoff factors where applicable. Choose the aqueous solution below with the lowest freezing point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. 0.075 m KNO2 0.075 m LiCN 0.075 m (NH4)3PO4 0.075 m NaI 0.075 m NaBrO4
Chemistry
2 answers:
iragen [17]2 years ago
8 0

<u>(NH₄)₃PO₄</u> has  the lowest freezing point.

<h3>Further explanation </h3>

Solution properties are the properties of a solution that don't depend on the type of solute but only on the concentration of the solute.

Solution properties of electrolyte solutions differ from non-electrolyte solutions because electrolyte solutions contain a greater number of particles because electrolytes break down into ions. So the Solution properties of electrolytes is greater than non-electrolytes.

The term is used in the Solution properties

  • 1. molal

that is, the number of moles of solute in 1 kg of solvent

\large {\boxed {\bold {m = mole. \frac {1000} {mass \: of \: solvent (in \: grams)}}}

  • 2. Boiling point and freezing point

Solutions from volatile substances have a higher boiling point and lower freezing points than the solvent

ΔTb = Tb solution - Tb solvent

ΔTb = boiling point elevation

\rm \Delta T_f=T_fsolvent-T_fsolution

\large {\boxed {\boxed {\bold {\Delta Tb \: = \: Kb.m}}}

\rm \Delta T_f=K_f\times m

Kb = molal boiling point increase

Kf = molal freezing point constant

m = molal solution

For electrolyte solutions there is a van't Hoff factor = i

i = 1 + (n-1) α

n = number of ions from the electrolyte

α = degree of ionization, strong electrolyte α = 1

so the freezing point formula becomes:

\rm \Delta T_f=K_f\times m\times i

All solutions in the problem have molal concentration (0.075 m) and the same solvent -> assuming water (The same \rm K_f) so that what affects the value of \rm \Delta T_fis the value of i

Assuming the degree of electrolyte ionization α= 1, the magnitude i is determined by the number of ions produced by the electrolyte (n)

KNO₂ ---> K⁺ + NO₂⁻ → 2 ions

LiCN ---> Li⁺+ CN⁻ → 2 ions

(NH₄)₃PO₄---> 3 NH₄ + + PO₄ ³⁻ → 4 ions

NaI ---> Na⁺ + I⁻ → 2 ions

NaBrO₄ ---> Na⁺ + BrO₄⁻ → 2 ions

(NH₄)₃PO₄ has the highest number of ions, so it has the highest \rm \Delta T_f and the lowest freezing point.

<h3>Learn more </h3>

colligative properties

brainly.com/question/8567736

Raoult's law

brainly.com/question/10165688

The vapor pressure of benzene

brainly.com/question/11102916

The freezing point of a solution

brainly.com/question/8564755

brainly.com/question/4593922

brainly.com/question/1196173

atroni [7]2 years ago
4 0

Answer:

(NH_4)_3PO_4 0.075 m solution has the lowest freezing point.

Explanation:

Depression in freezing point is given by:

\Delta T_f=T-T_f

\Delta T_f=K_f\times m

\Delta T_f=iK_f\times \frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Mass of solvent in Kg}}

where,

\Delta T_f =Depression in freezing point

K_f = Freezing point constant of solvent

1 - van't Hoff factor

m = molality

According question, molality of all the solutions are same and are in prepared with same solvent. So, values of molality and K_f will remain the same and will not effect the freezing point of the solution.

The lowering in freezing point will now depend upon van't Hoff factors of the solutions. Higher the value of van'Hoff factor more will be the lowering in freezing point of the solution.

The van't Hoff factor of KNO_2 solution = i_1=2

The van't Hoff factor of LiCN solution = i_2=2

The van't Hoff factor of (NH_4)_3PO_4 solution = i_3=4

The van't Hoff factor of NaI solution = i_4=2

The van't Hoff factor of NaBrO_3 solution = i_5=2

The solution of ammonium phosphate has the highest values of van't Hoff factor which will result in maximum lowering of the freezing point of the solution.

Hence,(NH_4)_3PO_4 0.075 m solution has the lowest freezing point.

You might be interested in
What would have happened to your results if during the dehydration some of the copper (ii) sulfate splatter out of the crucible-
lidiya [134]

Answer : The results would show more amount of water in the hydrated sample.

Explanation :

The amount of water of crystallization can be found by taking the masses of hydrated copper sulfate and anhydrous copper sulfate.

The difference in masses indicates the mass of water lost during dehydration process.

If during dehydration process, some of the copper sulfate spatters out of the crucible, then this would give us less mass for anhydrous sample than the actual.

As a result, the difference in masses of hydrated sample and the anhydrous sample would be more.

Therefore the results would show more amount of water in the hydrated sample.

4 0
2 years ago
A 20.0 -\,L volume of an ideal gas in a cylinder with a piston is at a pressure of 3.2 atm. Enough weight is suddenly removed fr
zzz [600]

Answer:

1. ΔE = 0 J

2. ΔH = 0 J

3. q = 3.2 × 10³ J

4. w = -3.2 × 10³ J

Explanation:

The change in the internal energy (ΔE) and the change in the enthalpy (ΔH) are functions of the temperature. If the temperature is constant, ΔE = 0 and ΔH = 0.

The gas initially occupies a volume V₁ = 20.0 L at P₁ = 3.2 atm. When the pressure changes to P₂ = 1.6 atm, we can find the volume V₂ using Boyle's law.

P₁ × V₁ = P₂ × V₂

3.2 atm × 20.0 L = 1.6 atm × V₂

V₂ = 40 L

The work (w) can be calculated using the following expression.

w = - P . ΔV

where,

P is the external pressure for which the process happened

ΔV is the change in the volume

w = -1.6 atm × (40L - 20.0L) = -32 atm.L × (101.325 J/1atm.L) = -3.2 × 10³ J

The change in the internal energy is:

ΔE = q + w

0 = q + w

q = - w = 3.2 × 10³ J

6 0
2 years ago
5.00 g of hydrogen gas and 50.0g of oxygen gas are introduced into an otherwise empty 9.00L steel cylinder, and the hydrogen is
GenaCL600 [577]
1) Balanced chemical reaction:

2H2 + O2 -> 2H20

Sotoichiometry: 2 moles H2: 1 mol O2 : 2 moles H2O

2) Reactant quantities converted to moles

H2: 5.00 g / 2 g/mol = 2.5 mol

O2: 50.0 g / 32 g/mol = 1.5625 mol

Limitant reactant: H2 (because as per the stoichiometry it will be consumed with 1.25 mol of O2).

3) Products

H2 totally consumed -> 0 mol at the end

O2 = 1.25 mol consumed -> 1.5625 mol - 1.25 mol = 0.3125 mol at the end

H2O: 2.5 mol H2 produces 2.5 mol H2O -> 2.5 mol at the end.

Total number of moles: 0.3125mol + 2.5 mol = 2.8125 mol

4) Pressure

Use pV = nRT
n = 2.8125
V= 9 liters
R = 0.082 atm*lit/K*mol
T = 35 C + 273.15 = 308.15K

p = nRT/V  = 7.9 atm
3 0
2 years ago
Read 2 more answers
Many plants are poisonous because their stems and leaves contain oxalic acid, H2C2O4, or sodium oxalate, Na2C2O4. When ingested,
Neporo4naja [7]

Answer:

Explanation:

Calcium chloride is a soluble salt which dissociates into calcium and chloride ions when dissolved in water.

CaCl₂(aq) ----> Ca²⁺(aq) + 2Cl⁻(aq)

Similarly, sodium oxalate when dissolved in water dissociates into sodium and oxalate ions.

Na₂CO₄(aq) ----> 2Na⁺(aq) + C₂O₄²⁻(aq)

However, in a double displacement reaction where the two solutions of the salts are mixed, the insoluble salt calcium oxalate is precipitated. The net ionic equation for the reaction is shown below:

Ca²⁺(aq) + C₂O₄²⁻(aq) ----> CaC₂O₄(s)

8 0
2 years ago
What is the mean rate of reaction 3.4g of copper sulphate was produced in 3 days?
kramer

Answer:

8.1×10^-8 mols-1

Explanation:

Now we have the mass of copper sulphate produced after three days. Recall that the rate of reaction is given as;

Rate= change in the concentration of product/time

At the beginning of the reaction, there was 0 moles of copper sulphate

After 72 hours or 259200 seconds, there was 3.4g/160gmol-1 = 0.021 moles of copper sulphate.

Note that 160gmol-1 is the molar mass of copper sulphate.

Hence;

Rate of reaction= 0.021 moles /259200 seconds

Hence, the rate of reaction is 8.1×10^-8 mols-1

Rate of reaction= 8.1×10^-8 mols-1

3 0
2 years ago
Other questions:
  • Write a balanced equation for the reaction of NaCH3COO (also written as NaC2H3O2) and HCl.
    10·2 answers
  • In an ionic bond:
    15·2 answers
  • The density of concentrated ammonia, which is 28.0% w/w nh3, is 0.899 g/ml. what volume of this reagent should be diluted to 1.0
    7·1 answer
  • You are performing a simple distillation of roughly 50:50 liquid solution containing two components, hexane and nonane You place
    14·1 answer
  • Which of the following solutions is a buffer? Check all that apply. Check all that apply. a solution made by mixing 100 mL of 0.
    12·2 answers
  • Old aspirin exposed to moisture often smells like acetic acid (vinegar). When aspirin is heated in boiling water, it decomposes
    8·1 answer
  • The student made observations related to the contents of the Erlenmeyer flask during the titration. Identify an observation that
    10·1 answer
  • A mixture containing 20 mole % butane, 35 mole % pentane and rest
    15·2 answers
  • Label each statement with its corresponding type of scientific knowledge. law theory fact hypothesis The melting point of ice is
    5·1 answer
  • A student measures a volume as 25 mL, whereas the correct volume is 23 mL. What is the percent error? * O 8.7% O 0.92% O 0.087%
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!