Explanation:
Initial time, t₁ = 2:30 pm
Final time, t₂ = 2:30:45
We need to find the motion of students in terms of time. Final time is 45 seconds more than the initial time.
Change in time,

Hence, this is the required solution.
Answer:
The tension in the string is quadrupled i.e. increased by a factor of 4.
Explanation:
The tension in the string is the centripetal force. This force is given by

m is the mass, v is the velocity and r is the radius.
It follows that
, provided m and r are constant.
When v is doubled, the new force,
, is

Hence, the tension in the string is quadrupled.
Answer:

Explanation:
Electric field strength= Force/unit charge
E= (kQq/r²)/q ₓ r
where r is the unit vector in the direction of unit charge
E= 
The given situation below describes a standing wave because the string is fixed at both ends. A standing wave having three anti-nodes will have a wavelength that is two-thirds the length of the string. After getting the wavelength, this can be multiplied with the frequency to get the wave speed.
For this problem:
wave length = (2/3)(length of string: 68 cm)
wave length = (10/3 cm)
wave speed = wave length x frequency
wave speed = (10/3 cm) x (180 Hz)
wave speed = 600 cm/s or 0.6 m/s