Answer:

Explanation:
As we know that Beacon is rotating with angular speed

so we have



now we know that

here we will have


so we have


Answer: 2R
Explanation:
Here the person travels пR distance. We know that the circumference of a circle is 2πR. So your imaginated person has traveled the distance which is half of the circumference of the circle. And this distance is equal to its diameter. We know that diameter of a circle is two times larger than the radius. So the person's displacement is two times of the radius, means 2R. [Here 'R' means the radius of the circle]
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
Answer:
the efficiency of hydralic is 79.88%
Explanation:
convert mm to m
1mm = (1/1000)m
diameter of pipe upsteam
d₁= 90mm= 0.09m
diameter of pipe downsteam
d₂= 30mm = 0.03m
finding velocity of upsteam
recall Q=A₁V₁
V₁=Q/A₁
V₁=3.14m/s
velocity of downsteam
V₂= Q/A₂
V₂= 28.29m/s
mass flow rate
m= ρQ
ρ is the density of water
m = 1000× 0.02
m= 20kg/s
the efficiency of hydralic is 79.88%
Answer:
Explanation:
b ) First is concave lens with focal length f₁ = - 12 cm .
object distance u = - 20 cm .
Lens formula
1 / v - 1 / u = 1 / f
1 / v + 1 / 20 = -1 / 12
1 / v = - 1 / 20 -1 / 12
= - .05 - .08333
= - .13333
v = - 1 / .13333
= - 7.5 cm
first image is formed before the first lens on the side of object.
This will become object for second lens
distance from second lens = 7.5 + 9 = 16.5 cm
c )
For second lens
object distance u = - 16.5 cm
focal length f₂ = + 12 cm ( lens is convex )
image distance = v
lens formula ,
1 / v - 1 / u = 1 / f₂
1 / v + 1 / 16.5 = 1 / 12
1 / v = 1 / 12 - 1 / 16.5
= .08333- .0606
= .02273
v = 1 / .02273
= 44 cm ( approx )
It will be formed on the other side of convex lens
distance from first lens
= 44 + 9 = 53 cm .
magnification by first lens = v / u
= -7.5 / -20 = .375 .
magnification by second lens = v / u
= 44 / - 16.5
= - 2.67
d )
total magnification
= .375 x - 2.67
= - 1.00125
height of final image
= 2.50 mm x 1.00125
= 2.503mm
e )
The final image will be inverted with respect to object because total magnification is negative .