<span>You are given an applied force of 110 n with an angle of 30</span>°<span> with the ground. Since the force is not perpendicular or parallel to the sled then you will have two components. These components are in sine and cosine form.
for parallel component
x = rcos</span>β
<span>x = 110cos30</span>°
<span>x = 95.26
for the perpendicular component
y = rsin</span>β
<span>y = 110sin30</span>°
<span>y = 55</span>
A goes with 2 and B goes with 1.
<h2>Solution :</h2>
Here ,
• Height of sign post = 30 m
• Distance between signpost and truck = 24 m
Let the
• Top of signpost = A
• Bottom of signpost = B
• The end of truck facing sign post be = C
Now as we can clearly imagine that the ladder will act as an hypotenuse to the Triangle ABC .
Where
• AB = Height of signpost = 30 m
• BC = distance between both = 24 m
• AC = Minimum length of ladder
→ AC² = AB² + BC² ( As we can see AB is perpendicular to BC )
→ AC² = (30)² + (24)²
→ AC² = 900 + 576
→ AC² = 1476
→ AC = 38.41875
or AC apx = 38.42
So minimum height of ladder = 38.42
Answer:
Explanation:
a )
This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .
b ) The wavelength of a photon is inversely proportional to its energy . Photon due to transition between n = 1 and n = 3 will have higher energy than
that due to transition between n = 2 and n = 5 . So the later photon ( B) will have greater wavelength or photon due to transition between n = 2 and n = 5 will have greater wavelength .
Answer: The direction of the electric field, E→, is pointed in the +y direction.
Explanation:
One can use the right hand rule to illustrate the direction of travel of an electromagnetic and thereby get the directions of the electric field, magnetic field and direction of travel of the wave.
The right hand rule states that the direction of the thumb indicate the direction of travel of the electromagnetic wave (<em>in this case the -z direction</em>) and the curling of the fingers point in the direction of the magnetic field B→ (<em>in this case the +x direction</em>), therefore, the electric field direction E→ is in the direction of the fingers which would be pointed towards the +y direction.