Answer:
The gravitational potential energy of a system is -3/2 (GmE)(m)/RE
Explanation:
Given
mE = Mass of Earth
RE = Radius of Earth
G = Gravitational Constant
Let p = The mass density of the earth is
p = M/(4/3πRE³)
p = 3M/4πRE³
Taking for instance,a very thin spherical shell in the earth;
Let r = radius
dr = thickness
Its volume is given by;
dV = 4πr²dr
Since mass = density* volume;
It's mass would be
dm = p * 4πr²dr
The gravitational potential at the center due would equal;
dV = -Gdm/r
Substitute (p * 4πr²dr) for dm
dV = -G(p * 4πr²dr)/r
dV = -G(p * 4πrdr)
The gravitational potential at the center of the earth would equal;
V = ∫dV
V = ∫ -G(p * 4πrdr) {RE,0}
V = -4πGp∫rdr {RE,0}
V = -4πGp (r²/2) {RE,0}
V = -4πGp{RE²/2)
V = -4Gπ * 3M/4πRE³ * RE²/2
V = -3/2 GmE/RE
The gravitational potential energy of the system of the earth and the brick at the center equals
U = Vm
U = -3/2 GmE/RE * m
U = -3/2 (GmE)(m)/RE
Answer:
Part a) When collision is perfectly inelastic

Part b) When collision is perfectly elastic

Explanation:
Part a)
As we know that collision is perfectly inelastic
so here we will have

so we have

now we know that in order to complete the circle we will have


now we have

Part b)
Now we know that collision is perfectly elastic
so we will have

now we have


Answer:
d. less than 20m/s
Explanation:
To the 2nd car, the first car is travelling 10m/s east and 10m/s south. So the total velocity of the first car with respect to the 2nd car is
[tex]\sqrt{10^2 + 10^2} =10\sqrt{2}=14.14m/s
As 14.14m/s is less than 20m/s. d is the correct selection for this question.
Answer:
The friend on moon will be richer.
Explanation:
We must calculate the mass of gold won by each person, to tell who is richer. For that purpose we will use the following formula:
W = mg
m = W/g
where,
m = mass of gold
W = weight of gold
g = acceleration due to gravity on that planet
<u>FOR FRIEND ON MOON</u>:
W = 1 N
g = 1.625 m/s²
Therefore,
m = (1 N)/(1.625 m/s²)
m(moon) = 0.6 kg
<u>FOR ME ON EARTH</u>:
W = 1 N
g = 9.8 m/s²
Therefore,
m = (1 N)/(9.8 m/s²)
m(earth) = 0.1 kg
Since, the mass of gold on moon is greater than the mass of moon on earth.
<u>Therefore, the friend on moon will be richer.</u>
Answer:
1. False 2) greater than. 3) less than 4) less than
Explanation:
1)
- As the collision is perfectly elastic, kinetic energy must be conserved.
- The expression for the final velocity of the mass m₁, for a perfectly elastic collision, is as follows:

- As it can be seen, as m₁ ≠ m₂, v₁f ≠ 0.
2)
- As total momentum must be conserved, we can see that as m₂ > m₁, from the equation above the final momentum of m₁ has an opposite sign to the initial one, so the momentum of m₂ must be greater than the initial momentum of m₁, to keep both sides of the equation balanced.
3)
- The maximum energy stored in the in the spring is given by the following expression:

- where A = maximum compression of the spring.
- This energy is always the sum of the elastic potential energy and the kinetic energy of the mass (in absence of friction).
- When the spring is in a relaxed state, the speed of the mass is maximum, so, its kinetic energy is maximum too.
- Just prior to compress the spring, this kinetic energy is the kinetic energy of m₂, immediately after the collision.
- As total kinetic energy must be conserved, the following condition must be met:
- So, it is clear that KE₂f < KE₁₀
- Therefore, the maximum energy stored in the spring is less than the initial energy in m₁.
4)
- As explained above, if total kinetic energy must be conserved:

- So as kinetic energy is always positive, KEf₂ < KE₁₀.