The force of F=10 N produces an extension of

on the string, so the spring constant is equal to

Then the string is stretched by

. The work done to stretch the string by this distance is equal to the variation of elastic potential energy of the string with respect to its equilibrium position:
Answer:
a) 4.485 kg b) 3.94 kg
Explanation:
since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .
44 = m * 9.81m/s^2
m = 44/9.81 = 4.485kg
b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)
44 = m (a +g)
44 = m (1.37 + 9.81)
44/11.18 = m
m = 3.94 kg
Answer:
The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Explanation:
Given that,
Distance between the slits = 0.04 mm
Width = 0.01 mm
Distance between the slits and screen = 1 m
Wavelength = 600 nm
We need to calculate the distance between the places where the intensity is zero due to the double slit effect
For constructive fringe
First minima from center

Second minima from center

The distance between the places where the intensity is zero due to the double slit effect



Put the value into the formula



Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Answer:
Explanation:
position of centre of mass of door from surface of water
= 10 + 1.1 / 2
= 10.55 m
Pressure on centre of mass
atmospheric pressure + pressure due to water column
10 ⁵ + hdg
= 10⁵ + 10.55 x 1000 x 9.8
= 2.0339 x 10⁵ Pa
the net force acting on the door (normal to its surface)
= pressure at the centre x area of the door
= .9 x 1.1 x 2.0339 x 10⁵
= 2.01356 x 10⁵ N
pressure centre will be at 10.55 m below the surface.
When the car is filled with air or it is filled with water , in both the cases pressure centre will lie at the centre of the car .
Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial
Being said that, we can calculate the initial velocity of the ball
a) First we analyze its horizontal motion


(1)
That would be our first equation
Now, we need to analyze its vertical motion


Knowing
in our first equation (1)


Solving for t

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components


So, the magnitude of the velocity is:

c) The <u><em>direction of the ball</em></u> is:
