The doctor's average speed for the whole trip is 75 km per hour. His average velocity for the whole trip is zero.
The Second Law of Thermodynamics states that the state of entropy of the entire universe, as an isolated system, will always increase over time.
Take that as you will
We have that The ratio U1/U2 of their potential energies due to their interactions with Q is
From the question we are told that
Question 1
Charge q1 is distance r from a positive point charge Q.
Question 2
Charge q2=q1/3 is distance 2r from Q.
Charge q1 is distance s from the negative plate of a parallel-plate capacitor.
Charge q2=q1/3 is distance 2s from the negative plate.
Generally the equation for the potential energy is mathematically given as

Therefore
The Equations of U1 and U2 is
For U1

For U2

Since
U is a function of q and q2=q1/3
Therefore

For Question 2
For U1

Therefore

For more information on this visit
brainly.com/question/23379286?referrer=searchResults
Let
upthrust = T
weight = W = mg
Air resistance = F
When balloon is descending, air resistance acts upwards (positive)
By Newton's first law, the net force on the balloon is zero, or
T+F-W=0......................(1)
Let w=weight of material dumped so that balloon now travels upwards at constant speed.
Air resistance acts against motion, namely downwards.
The Newton's equation now reads
T-F-(W-w)=0................(2)
Subtract (2) from (1)
T+F-W - (T-F-(W-w)) = 0
Solve for w
w=2F, or
the WEIGHT of material to be released equals twice the resistance of air.
Answer:
3.6 m
Explanation:
let x = horizontal distance between emily and allison should be for allison to catch the ball
Find horizontal speed of the ball
vx = 12 sin 30 = 12 x 0.5 = 6 m/s
To find time taken, we will use vertical values of the ball motion
Initial velocity in vertical direction
u = 12 cos 30 = 10.392 m/s
let a = g = 9.8m/s2
Use equation of motion
s = ut +1/2at^2
s = vertical distance = 8
8 = (10.392)t + (1/2)(9.8)t^2
8 = (10.392)t + (4.9)t^2
4.9t^2 + 10.392t - 8 = 0
Using formula of quadratic or calculator, we'll find
t = 0.6 and t = -2.72
We pick t=0.6s since it's not logical time in negative
Assuming no air resistance or external forces, the ball will move 6m/s horizontally. Hence using the formula of speed
speed vx = distance x / time
x = (vx)(t)
= 6 x 0.6
= 3.6 m