answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
2 years ago
15

Use the data given below to construct a Born-Haber cycle to determine the electron affinity of Br. △ H°(kJ) K(s) → K(g) 89 K(g)

→ K+(g) + e- 419 Br2(l) → 2 Br(g) 193 K(s) + 12 Br2(g) → KBr(s) -394 KBr(s) → K+(g) + Br-(g) 674 I know the answer is -325 kj, I want to know how to get it.
Chemistry
2 answers:
faust18 [17]2 years ago
7 0

Answer : The electron affinity of Br is, -324.5 kJ

Explanation :  

The formation of potassium bromide is,

K^{1+}(g)+\frac{1}{2}Br_2(g)\overset{\Delta H_L}\rightarrow KBr(s)

\Delta H_f^o = enthalpy of formation of potassium bromide

The steps involved in the born-Haber cycle for the formation of KBr:

(1) Conversion of solid lithium into gaseous potassium atoms.

K(s)\overset{\Delta H_s}\rightarrow K(g)

\Delta H_s = sublimation energy of potassium

(2) Conversion of gaseous potassium atoms into gaseous potassium ions.

K(g)\overset{\Delta H_I}\rightarrow K^{+1}(g)

\Delta H_I = ionization energy of potassium

(3) Conversion of molecular gaseous bromine into gaseous bromine atoms.

Br_2(g)\overset{\Delta H_D}\rightarrow 2Br(g)

\frac{1}{2}Br_2(g)\overset{\Delta H_D}\rightarrow Br(g)

\Delta H_D = dissociation energy of bromine

(4) Conversion of gaseous bromine atoms into gaseous bromine ions.

Br(g)+e^-\overset{\Delta H_E}\rightarrow Br^-(g)

\Delta H_E = electron affinity energy of bromine

(5) Conversion of gaseous cations and gaseous anion into solid potassium bromide.

K^{1+}(g)+Br^-(g)\overset{\Delta H_L}\rightarrow KBr(s)

\Delta H_L = lattice energy of potassium bromide

To calculate the overall energy from the born-Haber cycle, the equation used will be:

\Delta H_f^o=\Delta H_s+\Delta H_I+\frac{1}{2}\Delta H_D+\Delta H_E+\Delta H_L

Now put all the given values in this equation, we get:

-394=89+419+\frac{1}{2}\times 193+\Delta H_E+(-674)

\Delta H_E=-324.5kJ

Therefore, the electron affinity of Br is, -324.5 kJ

Gelneren [198K]2 years ago
6 0

Answer:

This is the value for the electron affinity = -339.8 kJ

Review the problem because it is possibly wrong and there are also incomplete or erroneous data

Explanation:

First of all,  you have to think the chemical reaction, based on the elements in their ground state.

K(g) + 1/2 Br₂ (l) → KBr

How do we find bromine or potassium in nature? Br₂  as gas, K as liquid.

For this reaction, we use △Hf (kJ) = -394 (formation enthalpy)

The reaction is then defined from the elements in the gaseous state, to form the crystals of the salt, so Br and K have to change state. At the end, the equation will be:

K⁺(g) +  Br⁻(g)  → KBr    This process used the energy called, lattice energy.

LE = -674 kJ.

So we have to go, from K(s) to K⁺(g), and from Br₂(l) to Br⁻(g).

First of all, we have to convert K(s)  → K(g)  with △Hsublimation: 89kJ

And then  tear out an electron to form the cation, with the ionization energy K(g)  → K⁺(g) + 1e⁻    △H: 419 kJ

In first place, we have to convert Br₂(l) to Br₂(g) with a vaporization process. For this: Br₂(l) → Br₂(g)    △H: 30.7 kJ <u>(THIS VALUE IS MISSING AND IT IS WRONG IN WHAT YOU WROTE)</u>

Notice we have, a half of 1 mol of bromine, so we have to convert a half of 1 mol, so we need a half of energy. The enthalpy vaporization is for 1 mol of Br₂, but we only have a half.

Aftewards, we have to separate the 1/2Br₂(g). As this is a dyatomic molechule, we need only 1 Br.

<em>DEFINETALY THERE IS MISTAKE ON WHAT YOU WROTE BECAUSE THIS VALUE IS INCORRECT IN THE STATEMENT.</em>

You use the enthalpy for dissociation to have this Br-Br. You must break the bond. △H = 193/2 kJ

And as you have 1/2 mol, you need 1/2 of energy

Now we have to apply, the electron affinity, to get the bromide anion.

1/2Br₂(g)  +  1e-  →  Br⁻ (g)     △H: ?

This is the unknown value.

How do you make the Born Haber cycle? The Sum all the △H + LE = △Hf

LE + △Hs + △Hie + △Hv + △Hdis  + EA = -394 kJ

EA = -394kJ - LE - △Hs - △Hie - △Hv - △Hdis

EA = -394kJ + 674 kJ - 89kJ - 419 kJ - 30.7/2 kJ - 193/2 kJ

EA = -339.8 kJ

You might be interested in
How many grams of KBr are required to make 550. mL of a 0.115 M KBr solution?
In-s [12.5K]

Molarity is expressed as the number of moles of solute per volume of the solution. For example, we are given a solution of 2M NaOH this describes a solution that has 2 moles of NaOH per 1 L volume of the solution. We calculate as follows:

0.115 M = n mol KBr / .55 L solution

n = 0.06325 mol KBr

mass = 0.06325 mol KBr (119 g / mol) = 7.53 g KBr

4 0
2 years ago
A chamber with a fixed volume is shown above. The temperature of the gas inside the chamber before heating is 25.2 C and it’s pr
rusak2 [61]

Answer:

Explanation:

Given parameters:

Initial temperature T₁  = 25.2°C  = 25.2 + 273  = 298.2K

Initial pressure  = P₁  = 0.6atm

Final temperature = 72.4°C   = 72.4 + 273  = 345.4K

Unknown:

Final pressure = ?

Solution:

To solve this problem, we use an adaption of the combined gas law where the volume gas is fixed. This simplification results into:

                  \frac{P_{1} }{T_{1} }   = \frac{P_{2} }{T_{2} }

where P and T are temperatures, 1 and 2 are initial and final temperatures.

 Input the parameters and solve;

          \frac{0.6}{298.2}   = \frac{P_{2} }{345.4}  

          P₂   = 0.7atm

         

3 0
2 years ago
Determine Z and V for steam at 250°C and 1800 kPa by the following: (a) The truncated virial equation [Eq. (3.38)] with the foll
makvit [3.9K]

Answer:

Explanation:

Given that:

the temperature T_1 = 250 °C= ( 250+ 273.15 ) K = 523.15 K

Pressure = 1800 kPa

a)

The truncated viral equation is expressed as:

\frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2}

where; B = - 152.5 \ cm^3 /mol   C = -5800 cm^6/mol^2

R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹

Plugging all our values; we have

\frac{1800*V}{8.314*10^3*523.15} = 1+ \frac{-152.5}{V} + \frac{-5800}{V^2}

4.138*10^{-4}  \ V= 1+ \frac{-152.5}{V} + \frac{-5800}{V^2}

Multiplying through with V² ; we have

4.138*10^4  \ V ^3 = V^2 - 152.5 V - 5800 = 0

4.138*10^4  \ V ^3 - V^2 + 152.5 V + 5800 = 0

V = 2250.06  cm³ mol⁻¹

Z = \frac{PV}{RT}

Z = \frac{1800*2250.06}{8.314*10^3*523.15}

Z = 0.931

b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].

The generalized Pitzer correlation is :

T_c = 647.1 \ K \\ \\ P_c = 22055 \  kPa  \\ \\ \omega = 0.345

T__{\gamma}} = \frac{T}{T_c}

T__{\gamma}} = \frac{523.15}{647.1}

T__{\gamma}} = 0.808

P__{\gamma}} = \frac{P}{P_c}

P__{\gamma}} = \frac{1800}{22055}

P__{\gamma}} = 0.0816

B_o = 0.083 - \frac{0.422}{T__{\gamma}}^{1.6}}

B_o = 0.083 - \frac{0.422}{0.808^{1.6}}

B_o = 0.51

B_1 = 0.139 - \frac{0.172}{T__{\gamma}}^{ \ 4.2}}

B_1 = -0.282

The compressibility is calculated as:

Z = 1+ (B_o + \omega B_1 ) \frac{P__{\gamma}}{T__{\gamma}}

Z = 1+ (-0.51 +(0.345* - 0.282) ) \frac{0.0816}{0.808}

Z = 0.9386

V= \frac{ZRT}{P}

V= \frac{0.9386*8.314*10^3*523.15}{1800}

V = 2268.01 cm³ mol⁻¹

c) From the steam tables (App. E).

At T_1 = 523.15 \  K \ and  \ P = 1800 \ k Pa

V = 0.1249 m³/ kg

M (molecular weight) = 18.015 gm/mol

V  =  0.1249 × 10³ × 18.015

V = 2250.07 cm³/mol⁻¹

R = 729.77 J/kg.K

Z = \frac{PV}{RT}

Z = \frac{1800*10^3 *0.1249}{729.77*523.15}

Z = 0.588

3 0
2 years ago
An atom of lithium-7 has an equal number of
slavikrds [6]
The answer is (2). The Lithium has 3 protons and 4 neutrons. For every neutral atom, it will have the same number of protons and electrons. Because the proton has one positive charge and electron has one negative charge and neutron does not have charge.
8 0
2 years ago
In the first paragraph, the words "disrobed," "unveiling" and<br> "deconstructed" primarily serve to
Solnce55 [7]

Complete Question:

In the first paragraph, the words “disrobed,” “unveiling” and “deconstructed” primarily serve to (a) highlight the negative connotations that laser technology currently has, (b) emphasize the extensive reach of laser technology; (c) demonstrate the inherently unknowable characteristics of objects, even with laser technology; (d) implicitly compare lasers to other forms of technology

Answer:

(b) emphasize the extensive reach of laser technology;

Explanation:

The use of the word disrobed and deconstructed from the passage emphasizes the extensive reach of laser technology. Even without looking up the dictionary meaning of the two words, one can easily deduce that the passage is a pro-laser technology one.

  • The passage presents the use of the laser technology in solar exploration.
  • It also show its use by ecologists.

#learnwithBrainly

8 0
2 years ago
Read 2 more answers
Other questions:
  • The group of molecules called nucleotides contain:
    13·1 answer
  • Calculate the heat change in calories for melting 65 g of ice at 0 ∘c.
    8·1 answer
  • Question 1(Multiple Choice Worth 3 points)
    13·1 answer
  • Which of the following statements about monosaccharide structure is true?
    7·1 answer
  • The refractive index, n of a polymer was determined as a function of temperature. The results are given in the table. Determine
    7·1 answer
  • If Co(NH3)63+ has a λmax at 440 nm, calculate ΔE for the complex. A) 2.72 x 10-4 kJ/mol B) 4.52 x 10-2 kJ/mol C) 2.72 x 10 2 kJ/
    5·1 answer
  • Suppose the price of gasoline increases 10% and quantity of gasoline demanded in Orlando drops 5% per day. Demand for gasoline i
    11·1 answer
  • An athlete has 15% body fat by mass. What is the weight of fat, in pounds, of a 74 kg-athlete?
    13·1 answer
  • There are three sets of sketches below, showing the same pure molecular compound (hydrogen chloride, molecular formula ) at thre
    15·1 answer
  • Which procedure cannot be performed on a hot plate, requiring a Bunsen burner instead
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!