Answer:
a = 4.72 m/s²
Explanation:
given,
mass of the box (m)= 6 Kg
angle of inclination (θ) = 39°
coefficient of kinetic friction (μ) = 0.19
magnitude of acceleration = ?
box is sliding downward so,
F - f = m a
f is the friction force
m g sinθ - μ N = ma
m g sinθ - μ m g cos θ = ma
a = g sinθ - μ g cos θ
a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°
a = 4.72 m/s²
the magnitude of acceleration of the box down the slope is a = 4.72 m/s²
If a galaxy is located 200 million light years from Earth, you can conclude that t<span>he light will take 200 million years to reach Earth. </span>
Answer:
Obviously Lengthen...
or 
Explanation:
As we can observe from the equation, time period of a simple pendulum depends upon the length directly. When the gravitational acceleration increases the time period of the pendulum decreases and vice versa. So, by increasing the length, the time period can be adjusted...
Most likely the answer is b
1) Yes
2) 
Explanation:
1)
To solve this part, we have to calculate the pressure at the depth of the batyscaphe, and compare it with the maximum pressure that it can withstand.
The pressure exerted by a column of fluid of height h is:

where
is the atmospheric pressure
is the fluid density
is the acceleration due to gravity
h is the height of the column of fluid
Here we have:
is the sea water density
h = 5440 m is the depth at which the bathyscaphe is located
Therefore, the pressure on it is

Since the maximum pressure it can withstand is 60 MPa, then yes, the bathyscaphe can withstand it.
2)
Here we want to find the force exerted on the bathyscaphe.
The relationship between force and pressure on a surface is:

where
p is hte pressure
F is the force
A is the area of the surface
Here we have:
is the pressure exerted
The bathyscaphe has a spherical surface of radius
r = 3 m
So its surface is:

Therefore, we can find the force exerted on it by re-arranging the previous equation:
