Answer:
Temperature at which molybdenum becomes superconducting is-272.25°C
Explanation:
Conductor are those hard substances which allows path of electric current through them. And super conductors are those hard substances which have resistance against the flow of electric current through them.
As given, molybdenum becomes superconducting at temperatures below 0.90 K.
Temperature in Kelvins can be converted in °C by relation:
T(°C)=273.15-T(K)
Molybdenum becomes superconducting in degrees Celsius.
T(°C)=273.15-0.90= -272.25 °C
Temperature at which molybdenum becomes superconducting is -272.25 °C
Answer:
activity coefficient 
activity coefficient 
The change in pH in part A = 0.092
The change in pH in part B = 0.102
Explanation:
From the given information:
pH of HCl solution = 1.092
Activity of the pH solution [a] = 
[a] = 0.0809 M
Recall that [a] =
× C
where;
= activity coefficient
C = concentration
Making the activity coefficient the subject of the formula, we have:
![\gamma = \dfrac{[a]}{C}](https://tex.z-dn.net/?f=%5Cgamma%20%3D%20%5Cdfrac%7B%5Ba%5D%7D%7BC%7D)


B.
The pH of a solution of HCl and KCl = 2.102
[a] = 
[a] = 0.00791 M
activity coefficient 

C. The change in pH in part A = 1.091 - 1.0 = 0.092
The change in pH in part B = 2.102 -2.00 = 0.102
Answer:
c. Bomb calorimetry
Explanation:
The hydrocarbons are combustibles, it means that they can react in a combustion reaction to release energy. To measure this amount of energy, it's necessary equipment that the reaction can be placed in a controlled way. The bomb calorimeter is this equipment, which is an adiabatic vessel, with water. The heat is calculated based on the increase in the water temperature.
The coffee-cup calorimetry is used to measure the heat of a dissolution reaction and the bomb manometry is used to measure the pressure.
Answer:
a) if the liquid is not vaporized completely, then the condensed vapor in the flask contains the air which is initially occupied before the liquid is heated. When calculating the molar mass of the vapor the moles of air which are initially present are not excluded, so that the molar mass of the vapor would be an increase in value.
b) While weighing the condensed vapor, the flask should be dried. If the weighing flask is not dried then the water which is layered on the surface of the flask is also added to the mass of the vapor. Therefore, the mass of the vapor that is calculated would be increase.
c) When condensing the vapor, the stopper should not be removed from the flask, because the vapor will escape from the flask and a small amount of vapor will condense in the flask. Therefore, the mass of the condensed vapor would be In small value.
d) If all the liquid is vaporized, when the flask is removed before the vapor had reached the temperature of boiling water, then the boiling
temperature of that liquid would be lower than that of the boiling temperature of the water.Therefore, the liquid may have more volatility.