First, we assume that helium behaves as an ideal gas such that the ideal gas law is applicable.
PV = nRT
where P is pressure, V is volume, n is number of moles, R is universal gas constant, and T is temperature. From the equation, if n, R, and T are constant, there is an inverse relationship between P and V. From the given choices, the container with the greatest pressure would be the 50 mL.
<span>pm stands for picometer and picometers are units which can be used to measure really tiny distances. One picometer is equal to 10^{-12} meters. We know that one centimeter is equal to 10^{-2} m so there are 10^2 cm per meter.
We can change the distance d = 115 pm to units of centimeters.
d = (115 pm) x (10^{-12}m / pm) x (10^2 cm / m)
d = 115 x 10^{-10} cm = 1.15 x 10^{-8} cm
The distance in centimeters is 1.15 x 10^{-8} cm</span>
The balanced chemical equation that represents the reaction is as follows:
<span>SrBr2(aq) + 2AgNO3(aq) → Sr(NO3)2(aq) + 2AgBr(s)
</span>
From the periodic table:
mass of silver = 108 grams
mass of bromine = 80 grams
molar mass of silver bromide = 108 + 80 = 188 grams
number of moles = mass / molar mass
number of moles of produced precipitate = 3.491/188 = 0.018 moles
From the balanced equation:
1 mole of strontium bromide produces 2 moles of silver bromide. Therefore, to calculate the number of moles of <span>strontium bromide that produces 0.018 moles of silver bromide, you will just do a cross multiplication as follows:
amount of </span><span>strontium bromide = (0.018x1) / 2 = 9.28 x 10^-3 moles</span>
When the concentration is expressed in molality, it is expressed in moles of solute per kilogram of solvent. Since we are given the mass of the solvent, which is water, we can compute for the moles of solute NaNO3.
0.5 m = x mol NaNO3/0.5 kg water
x = 0.25 mol NaNO3
Since the molar mass of NaNO3 is 85 g/mol, the mass is
0.25 mol * 85 g/mol = 21.25 grams NaNO3 needed