The first ionization energy of a known element is the energy
it needs to remove its highest energy or outermost electron. It is done to make
a neutral atom be a positively charged ion. The first ionization energy of neon
as a chemical equation is this:
Ne (g) -> Ne+ (g) + e-
Answer:

Explanation:
Hello,
In this case, given that the mass of the product is 0.534 g, we can infer that the percent composition of tin is:

Therefore, the percent composition of oxygen is 6.4% for a 100% in total. Thus, with such percents we compute the moles of each element in the oxide:

In such a way, for finding the smallest whole number we divide the moles of both tin and oxygen by the moles of oxygen as the smallest moles:

Therefore, the empirical formula is:

Best regards.
Answer:

Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:
Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
For two situations and phases, the equation becomes:

Given:
= 13.95 torr
= 144.78 torr
= 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
= 298.15 K
= 75°C = 348.15 K
So,





Acetaldehyde is an organic compound (a compound containing C atoms) composed of a carbonyl group. On the other hand, a carbonyl group is a functional group containing C = O. The hybrid orbitals of a compound determines the number pi and s orbitals in the electronic configuration. For a single bond, there are two s orbitals. For double bonds, on the other hand, the number of s orbital bond is 1 while the number of pi bonds is 2. For triple bonds, there are three pi bonds present in the cloud.
Thus for a c = O bond, the atomic orbital configuration is sp3 containing 1 s orbital and 2 pi bonds.