Answer:
The over all reaction :
The standard cell potential of the reaction is 0,.897 Volts.
Explanation:
Reduction at cathode :
..[1]

Reduction potential of
to 
Oxidation at anode:
.[2]

Reduction potential of
to 
To calculate the
of the reaction, we use the equation:

Putting values in above equation, we get:


The over all reaction : 2 × [1] + [2]
The standard cell potential of the reaction is 0,.897 Volts.
<span>NaCl
First calculate the molar mass of NaCl and AgNO3 by looking up the atomic weights of each element used in either compound
Sodium = 22.989769
Chlorine = 35.453
Silver = 107.8682
Nitrogen = 14.0067
Oxygen = 15.999
Now multiply the atomic weight of each element by the number of times that element is in each compound and sum the results
For NaCl
22.989769 + 35.453 = 58.44277
For AgNO3
107.8682 + 14.0067 + 3 * 15.999 = 169.8719
Now calculate how many moles of each substance by dividing the total mass by the molar mass
For NaCl
4.00 g / 58.44277 g/mol = 0.068443 mol
For AgNO3
10.00 g / 169.8719 g/mol = 0.058868
Looking at the balanced equation for the reaction, there is a 1 to 1 ratio in molecules for the reaction. Since there is a smaller number of moles of AgNO3 than there is of NaCl, that means that there will be some NaCl unreacted, so the excess reactant is NaCl</span>
Your going to want to round 8.01 to 8.01 and change 3.127 rounded too 3.1
then u want to take 8.0 and 3.1 and times it and u will get 24.8 or 25
<Sgx,JASYLDhLAxhclsxb cddont know
Answer:
Tell the teacher about the accident right away.