Answer:
0.5
Explanation:
2NaCl(s) + 2H2SO4(l) + MnO2(s) → Na2SO4(s) + MnSO4(s) + 2H2O(g) + Cl2(g)
Using ideal gas equation,
PV = nRT
28.7torr
Converting torr to atm,
= 0.0378atm
V = 0.597L
T = 27 °C
= 300 K
a) PV = nRT
(0.0378atm) * (0.597L) = n(0.0821) * (300k)
= 0.000915 mol
moles of water and chlorine = 0.000915 mol
From the above equation, the ratio of water to chlorine = 1 : 2
Therefore, mole of chlorine = 0.000915/2
= 0.000458 mol
mole fraction = moles of specie/moles of all the species present
= 0.000458/0.000915
= 0.5
Answer:
It sounds like they are studying French phonemes
Explanations:
I just learned this.
Answer:

Explanation:
There are no molecules in NaCl, because it consists only of ions.
However, we can calculate the number of formula units (FU) of NaCl.
Step 1. Calculate the moles of NaCl

Step 2. Convert moles to formula units

There are
in 3.6 g of NaCl.
I'm going to suppose you want the adjusted chemical reaction, using the formulas of the compounds. You can see it in the image attached.
The Molecule of Sodium Formate along with Formal Charges (in blue) and lone pair electrons (in red) is attached below.
Sodium Formate is an ionic compound made up of a positive part (Sodium Ion) and a polyatomic anion (Formate).
Nomenclature:
In ionic compounds the positive part is named first. As sodium ion is the positive part hence, it is named first followed by the negative part i.e. formate.
Name of Formate:
Formate ion has been derived from formic acid ( the simplest carboxylic acid). When carboxylic acids looses the acidic proton of -COOH, they are converted into Carboxylate ions.
E.g.
HCOOH (formic acid) → HCOO⁻ (formate) + H⁺
H₃CCOOH (acetic acid) → H₃CCOO⁻ (acetate) + H⁺
Formal Charges:
Formal charges are calculated using following formula,
F.C = [# of Valence e⁻] - [e⁻ in lone pairs + 1/2 # of bonding electrons]
For Oxygen:
F.C = [6] - [6 + 2/2]
F.C = [6] - [6 + 1]
F.C = 6 - 7
F.C = -1
For Sodium:
F.C = [1] - [0 + 0/2]
F.C = [1] - [0]
F.C = 1 - 0
F.C = +1