1 in=2.54 cm=(2.54 cm)(1 m/100 cm)=0.0254 m
Therefore:
1 in=0.0254 m
1 in³=(0.0254 m)³=1.6387064 x 10⁻⁵ m³
Therefore:
8.06 in³=(8.06 in³)(1.6387064 x 10⁻⁵ m³ / 1 in³)≈1.321 x 10⁻⁴ m³.
Answer: 8.06 in³=1.321 x 10⁻⁴ m³
Answer:
A = 4.76 x 10⁻⁴ m²
Explanation:
given,
weight of the person = 625 N
weight of the bike = 98 N
Pressure on each Tyre = 7.60 x 10⁵ Pa
Area of contact on each Tyre = ?
total weight of the system = 625 + 98
= 723 N
Let F be the force on both the Tyre
F + F = W
2 F = 723
F = 361.5 N
F = P A

A = 4.76 x 10⁻⁴ m²
Answer:
The magnitude of change in momentum is (2mv).
Explanation:
The momentum of an object is given by the product of mass and velocity with which it is moving.
Let the mass of ball is m. A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it struck the wall.
Initial speed of the ball is v and final speed, when it rebounds, is (-v). The change in momentum is given by :
p = final momentum - initial momentum

So, the magnitude of change in momentum is (2mv).
Answer:
The displacement of the spring due to weight is 0.043 m
Explanation:
Given :
Mass
Kg
Spring constant 
According to the hooke's law,

Where
force,
displacement
Here,
(
)
N
Now for finding displacement,

Here minus sign only represent the direction so we take magnitude of it.

m
Therefore, the displacement of the spring due to weight is 0.043 m