<u>Answer:</u>
15.97 N force is tending to pull Rover forward
<u>Explanation:</u>
The woman pulls on the leash with a force of 20.0 N at an angle of 37° above the horizontal. The arrangement is shown in the given figure,
We nee to find the pulling force P. The 20.0 N force has two components, 20.0 cos 37 in horizontal direction and 20.0 sin 37 in vertical direction.
The horizontal component is equal to pulling force P, which will pull Rover forward/
So, P = 20.0 cos 37 = 15.97 N
15.97 N force is tending to pull Rover forward.
Answer:
= 3289.8 m / s
Explanation:
This exercise can be solved using the definition of momentum
I = ∫ F dt
Let's replace and calculate
I = ∫ (at - bt²) dt
We integrate
I = a t² / 2 - b t³ / 3
We evaluate between the lower limits I=0 for t = 0 s and higher I=I for t = 2.74 ms
I = a (2,74² / 2- 0) - b (2,74³ / 3 -0)
I = a 3,754 - b 6,857
We substitute the values of a and b
I = 1500 3,754 - 20 6,857
I = 5,631 - 137.14
I = 5493.9 N s
Now let's use the relationship between momentum and momentum
I = Δp = m
- m v₀o
I = m
- 0
= I / m
= 5493.9 /1.67
= 3289.8 m / s
Answer:
Density of body = 0.25g/cc
Explanation:
Given:
Volume submerged in water = 3/4
Find:
Density Of Body
Computation:
Density of body = fraction of body in liquid x density of water
Density of body = [1-3/4]1
Density of body = 0.25g/cc
<span>E = h x f </span>
<span>. . . then : </span>
<span>f = E / h </span>
<span>f = 4,41•10^-19 / 6,62•10^-34 </span>
<span>f = 6,66•10^14 Hz (s^-1) </span>
<span>b/ What is the wavelength of this light ? </span>
<span>- - - - - - - - - - - - - - - - - - - - - - - - - - - - </span>
<span>λ = c / f </span>
<span>λ = 3•10^8 / 6,66•10^14 </span>
<span>λ = 4,50•10^-7 m </span>
Answer:
halved
Explanation:
The velocity of the a wave is obtained by multiplying the frequency and wavelength.

Where
v = Velocity
f = Frequency
= Wavelength
The velocity here is constant. So, if the frequency is doubled the wavelength is halved.