<span>Cu⁺ is the only one of the ions in the list that will show 8 electrons in a d sublevel....its configuration will be Ar| 4s² 3d⁸
hope this helps</span>
Answer:
92.65256 cm^3
Explanation:
To find this, we can simply multiply all three dimensions to get the answer in cubic centimeters, and we get the answer above. If you want to be more specific, we can go by the sigfig rule and the answer would be rounded to 93 cm^3.
<h3>Answer:</h3>
Platoic Acid
<h3>Explanation:</h3>
While naming Carboxylic Acids we know that when the Carboxylic Acid looses proton it is converted into corresponding conjugate base called as Carboxylate.
Examples:
HCOOH → HCOO⁻ + H⁺
Formic acid Formate Ion
H₃CCOOH → H₃CCOO⁻ + H⁺
Acetic acid Acetate Ion
H₅C₂COOH → H₅C₂COO⁻ + H⁺
Propanoic acid Propanoate Ion
Therefore, if the conjugate base is Platoate then the corresponding acid will be Platoic Acid means we will replace the -ate by -ic acid <em>i.e.</em>
RCOO⁻ + H⁺ → RCOOH
Platoate Ion Platoic Acid
The given dehydration equation is,

Cadmiumnitrate tetrahydrate when heated dehydrates releasing the combined water as water vapor. The reaction produces 4 moles of gaseous product water vapor. So, the degree of disorder or randomness increases. Hence, the sign of change in entropy is positive.
This reaction is spontaneous at room temperature even if it is endothermic as the sign of change in entropy is positive.
Answer:
Reactions 1, 3 and 5
Explanation:
First thing's first, let's ensure that all the reactions given are balanced. This is given as;
CO(g) + 1/2 O2(g )→ CO2(g)
Li(s) + 1/2 F2(l) → LiF(s)
C(s) + O2(g) → CO2(g)
CaCO3(g) → CaO + CO2(g)
2Li(s) + F2(g) → 2LiF(s)
For the condition to be valid;
- There is by convention 1 mol of product made. This means we eliminate reactions with more than one mole of compound formed. This eliminates reaction 5.
- The lements haveto be in their state at room temperature. Fluorine is a gas, not a liquid, at room temperature ans pressure, so 2 is not a correct answer.
This leaves us with reactions 1, 3 and 5 as the correct reactions that satisify the condition.