Answer:
630cm/s
Explanation:
In simple harmonic motion, the tangential velocity is expressed mathematically as v = ὦr
ὦ is the angular velocity = 2πf
r is the radius of the disk
f is the frequency
Given the radius of disk = 10cm
frequency = 10Hz
v = 2πfr
v = 2π×10×10
v = 200π
v = 628.32 cm/s
The tangential velocity = 630cm/s ( to 2 significant figures)
Hot combustion gases are accelerated in a 92% efficient
adiabatic nozzle from low velocity to a specified velocity. The exit velocity
and the exit temp are to be determined.
Given:
T1 = 1020 K à
h1 = 1068.89 kJ/kg, Pr1 = 123.4
P1 = 260 kPa
T1 = 747 degrees Celsius
V1 = 80 m/s ->nN = 92% -> P2
= 85 kPa
Solution:
From the isentropic relation,
Pr2<span> = (P2 / P1)PR1 = (85
kPa / 260 kPa) (123.4) = 40.34 = h2s = 783.92 kJ/kg</span>
There is only one inlet and one exit, and thus, m1 =
m2 = m3. We take the nozzle as the system, which is a
control volume since mass crosses the boundary.
h2a = 1068.89 kJ/kg – (((728.2 m/s)2 –
(80 m/s)2) / 2) (1 kJ/kg / 1000 m2/s2) =
806.95 kJ/kg\
From the air table, we read T2a = 786.3 K
Answer:(a) 50 N
(b)38.34 N
Explanation:
Given
Maximum tension(T) in line 50 N
(a)If line is moving up with constant velocity i.e. there is no acceleration
This will happen when Tension is equal to weight of Fish
T-mg=0
T=mg
Maximum weight in this case will be 50 N
(b)acceleration of magnitude 
T-mg=ma


m=3.91
Therefore weight is 
Answer:
2.93 A
Explanation:
From Ohm's law V = IR where V = voltage = 12 V, I = current = ? and R = resistance = 4.1 Ω.
So, the current in each quadraphonic stereo circuit is I = V/R = 12 V/4.1 Ω = 2.93 A