Answer:
2666 kg
0.11567 m/s²
Explanation:
m = Mass of boat
a = Acceleration of boat
From Newton's second law
Force

Force on the first boat is 333.25 N

Hence, mass of the second boat is 2666 kg
Combined mass = 2666+215 = 2881 kg

The acceleration on the combined mass is 0.11567 m/s²
Answer:
There is 148.35 Joules of heat is released in the process.
Explanation:
Given that,
Heat capacity of the object, 
Initial temperature, 
Final temperature, 
We need to find the amount of heat released in the process. It is a concept of heat capacity. The heat released in the process is given by :

Let the mass of the object is 10 g or 0.01 kg
So,

Q = 148.35 Joules
So, there is 148.35 Joules of heat is released in the process. Hence, this is the required solution.
Answer:
3.964 s
Explanation:
Metric unit conversion:
1 miles = 1.6 km = 1600 m.
1 hour = 60 minutes = 3600 seconds
75 mph = 75 * 1600 / 3600 = 33.3 m/s
22.5 mph = 22.5 * 1600/3600 = 10 m/s
Let g = 9.81 m/s2
Friction is the product of coefficient and normal force, which equals to the gravity

The deceleration caused by friction is friction divided by mass according to Newton 2nd law.

So the time required to decelerate from 33.3 m/s to 10 m/s so the wheels don't slide, with the rate of 5.886 m/s2 is

that would be given by
[email protected]
@ representing coefficient of kinetic friction.
thus 19.5/51.7 = 0.377