Answer:
It is a superordinate goal because both teams could have helped with the task.
Explanation:
If both teams pushed then they could have made it happened
Infiltration
Explanation:
The component of the hydrologic cycle affected by impervious building such as concrete and asphalt is infiltration.
- Water infiltration is a major component of the hydrologic cycle.
- Concretes and other materials can prevent water from going down into the earth.
- This affects the ground water system in place.
- It leads to increase in surface run off and might cause inundation of an area.
- Infiltration is a very important component of water cycle.
- It takes water to plant root and recharges groundwater systems.
- Impervious structures takes this capability away.
learn more:
Biogeochemical cycle brainly.com/question/3509510
#learnwithBrainly
Answer:
<em>a) Fvt cosθ</em>
<em>b) Fv cosθ</em>
<em></em>
Explanation:
Each horse exerts a force = F
the rope is inclined at an angle = θ
speed of each horse = v
a) In time t, the distance traveled d = speed x time
i.e d = v x t = vt
also, the resultant force = F cosθ
Work done W = force x distance
W = F cosθ x vt = <em>Fvt cosθ</em>
<em></em>
b) Power provided by the horse P = force x speed
P = F cosθ x v
P = <em>Fv cosθ</em>
Answer:
d. less than 20m/s
Explanation:
To the 2nd car, the first car is travelling 10m/s east and 10m/s south. So the total velocity of the first car with respect to the 2nd car is
[tex]\sqrt{10^2 + 10^2} =10\sqrt{2}=14.14m/s
As 14.14m/s is less than 20m/s. d is the correct selection for this question.
Answer:

Explanation:
-The only relevant force is the electrostatic force
-The formula for the electrostatic force is:

E is the electric field and q is the magnitude of the charge.
#Since the electric field is the same in both cases, and the charge of the protons and electrons have the same magnitude, you can state that the magnitude of the electric forces acting in both proton and electron are the same.

-Applying Newton's 2nd Law:



#equate the two forces:

#The equations for velocity in uniform acceleration:

#For the proton:

#For the electron:

The mass values of the proton and electron are:

The speed of the ion is therefore calculated as:

Hence, the ion's speed at the negative plate is 