Answer:
Isothermal : P2 = ( P1V1 / V2 ) , work-done 
Adiabatic : : P2 =
, work-done =
W = 
Explanation:
initial temperature : T
Pressure : P
initial volume : V1
Final volume : V2
A) If expansion was isothermal calculate final pressure and work-done
we use the gas laws
= PIVI = P2V2
Hence : P2 = ( P1V1 / V2 )
work-done :

B) If the expansion was Adiabatic show the Final pressure and work-done
final pressure

where y = 5/3
hence : P2 = 
Work-done
W = 
Where 
<h3><u>Answer;</u></h3>
= 1.256 m
<h3><u>Explanation;</u></h3>
We can start by finding the spring constant
F = k*y
Therefore; k = F/y = m*g/y
= 0.40kg*9.8m/s^2/(0.76 - 0.41)
= 11.2 N/m
Energy is conserved
Let A be the maximum displacement
Therefore; 1/2*k*A^2 = 1/2*k*(1.20 - 0.41)^2 + 1/2*m*v^2
Thus; A = sqrt((1.20 - 0.55)^2 + m/k*v^2)
= sqrt((1.20 -0.55)^2 + 0.40/9.8*1.6^2)
= 0.846 m
Thus; the length will be 0.41 + 0.846 = 1.256 m
Answer:
a) 447.21m
b) -62.99 m/s
c)94.17 m/s
Explanation:
This situation we can divide in 2 parts:
⇒ Vertical : y =-200 m
y =1/2 at²
-200 = 1/2 *(-9.81)*t²
t= 6.388766 s
⇒Horizontal: Vx = Δx/Δt
Δx = 70 * 6.388766 = 447.21 m
b) ⇒ Horizontal
Vx = Δx/Δt ⇒ 70 = 400 /Δt
Δt= 5.7142857 s
⇒ Vertical:
y = v0t + 1/2 at²
-200 = v(5.7142857) + 1/2 *(-9.81) * 5.7142857²
v0= -7 m/s ⇒ it's negative because it goes down.
v= v0 +at
v= -7 + (-9.81) * 5.7142857
v= -62.99 m/s
c) √(70² + 62.99²) = 94.17 m/s