<u>Given:</u>
Moles of gas, n = 1.50 moles
Volume of cylinder, V = 15.0 L
Initial temperature, T1 = 100 C = (100 + 273)K = 373 K
Final temperature, T2 = 150 C = (150+273)K = 423 K
<u>To determine:</u>
The pressure ratio
<u>Explanation:</u>
Based on ideal gas law:
PV = nRT
P= pressure; V = volume; n = moles; R = gas constant and T = temperature
under constant n and V we have:
P/T = constant
(or) P1/P2 = T1/T2 ---------------Gay Lussac's law
where P1 and P2 are the initial and final pressures respectively
substituting for T1 and T2 we get:
P1/P2 = 373/423 = 0.882
Thus, the ratio of P2/P1 = 1.13
Ans: The pressure ratio is 1.13
Answer:
this is the answer
I hope it helps you although
Answer:
2
Explanation:
Mass of water molecule = mass of hydrated salt - mass of anhydrous salt
Mass of water molecule = 5.00 - 4.26 = 0.74g of water molecule.
Number of moles = mass / molarmass
Molar mass of water = 18.015g/mol
No. of moles of water = 0.74 / 18.015 = 0.0411 moles.
Mass of BaCl2 present =?
1 mole of BaCl2 = 208.23 g
X mole of BaCl2 = 4.26 g
X = (4.26 * 1) / 208.23
X = 0.020
0.020 moles is present in 4.26g of BaCl2
Mole ratio between water and BaCl2 =
0.0411 / 0.020 = 2
Therefore 2 molecules of water is present the hydrated salt.
It is a geothermal power plant
25 g of NH₃ will produce 47.8 g of (NH₄)₂S
<u>Explanation:</u>
2 NH₃ + H₂S ----> (NH₄)₂S
Molecular weight of NH₃ = 17 g/mol
Molecular weight of (NH₄)₂S = 68 g/mol
According to the balanced reaction:
2 X 17 g of NH₃ produces 68 g of (NH₄)₂S
1 g of NH₃ will produce
g of (NH₄)₂S
25g of NH₃ will produce
of (NH₄)₂S
= 47.8 g of (NH₄)₂S
Therefore, 25 g of NH₃ will produce 47.8 g of (NH₄)₂S