The location of the valence electron or the outermost electron is expressed in quantum numbers. There are five quantum numbers: prinicipal (n), angular momentum (l), magnetic (ms) and magnetic spin (ms) quantum numbers. This is based on Bohr's atomic model where electrons orbit around the nucleus. These electrons are in the orbitals with specific energy levels. Starting from energy level 1 that is closest to the nucleus, the energy level decreases to 2, 3, 4, 5, 6, and 7. These energy level numbers represent the principal quantum number. Within each orbital also contains subshell. From increasing to decreasing order, these subshells are the s, p, d and f subshells. These subshells represent the angular momentum quantum numer. Specifically, s=0, p=1, d=2 and f=3. Therefore, if the electron is in the orbital 5p, the quantum number would be: 5, 1. Applying these to the choices, the correct pairing would be:
2p: n=2. l=1
3d: n=3, l=2
2s: n=2. l=0
4f: n=4. l=3
1s: n=1, l=0
The formula to find yield is
(Actual Yield)/(Theorectical Yield) x100
Just do the math.
85.22% x 113 = 96.2986
Convert it to 3 significant figures
Ans: 96.3g
Answer:
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions.
Explanation:
The student have in solution Ag⁺ and Cu²⁺ ions but he just want to analyze the silver, that means he need to separate ions.
Centrifuging the solution to isolate the heavier ions <em>FALSE </em>Centrifugation allows the separation of a suspension but Ag⁺ and Cu²⁺ are both soluble in water.
Adding enough base solution to bring the pH up to 7.0 <em>FALSE </em>At pH = 7,0 these ions are soluble in water and its separation will not be possible.
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions <em>TRUE </em>For example, the addition of Cl⁻ will precipitate the Ag⁺ as AgCl(s) allowing its separation.
Evaporating the solution to recover the dissolved nitrates. <em>FALSE</em> . Thus, you will obtain the nitrates of these ions but will be mixed doing impossible its separation.
I hope it helps!
Answer:
The heat of combustion of magnesium metal is 24.76 kJ/gram
Explanation:
Step 1: Data given
Mass of magnesium sample = 0.1946 grams
Molar mass of magnesium = 24.3 g/mol
bomb calorimeter that has a heat capacity of 1349 J/°C
Mass of water = 500 grams
Temperature change = 1.40 °C
Step 2: Calculated heat released
Q = (1349 J/°C * 1.40 °C) + (500 grams * 4.184 J/g°C * 1.40 °C)
Q =4817.4 J = 4.82 kJ
Step 3: Calculate the heat given off by the burning Mg, in kJ/g
4817.4 J / 0.1946 grams = 24755.4 J/ gram = 24.76 kJ/ gram
The heat of combustion of magnesium metal is 24.76 kJ/gram
The noble gas notation is the short or abbreviated form of the electron configuration.
It means that you use the symbol of the previous noble gas as part of the electron configuration of an element.
The gas noble previous to antimony is Kr, so you do not use Xe to write the electron configuration of Sb.
The gas noble previous to radium is Rn, so you do not use Xe to wirte the electron configuration of Ra.
The gas noble previous to uranium is Rn, so you do not use Xe to write the electron configuration of U.
The gas noble previous to cesium is Xe, so you use Xe to write the noble notation for Sb. This is it: Cs: [Xe] 6s.
Answer: cesium
The ga