Answer:
149.34 Giga meter is the distance d from the center of the sun at which a particle experiences equal attractions from the earth and the sun.
Explanation:
Mass of earth = m = 
Mass of Sun = M = 333,000 m
Distance between Earth and Sun = r = 149.6 gm = 1.496\times 10^{11} m[/tex]
1 giga meter = 
Let the mass of the particle be m' which x distance from Sun.
Distance of the particle from Earth = (r-x)
Force between Sun and particle:

Force between Sun and particle:

Force on particle is equal:
F = F'

= ±577.06
Case 1:

x = 
Acceptable as the particle will lie in between the straight line joining Earth and Sun.
Case 2:

x = 
Not acceptable as the particle will lie beyond on line extending straight from the Earth and Sun.
Answer:
Explanation:
The acceleration of an object down a slope (neglecting friction, µ = 0) is:
a = g × sin θ
Where,
g is the acceleration due to gravity and θ is the angle of the slope.
a = (9.8 × sin (21.5º)
= 3.592 m/s²
Using equations of motion,
S = ut + 1/2at²
Since, u = 0,
S = 1/2at²
347 = 1/2 × (3.592)t²
t² = 193.21
= sqrt(193.21)
= 13.9 s.
Answer: 7.66 m/s
Explanation:
This situation is related to free fall (vertical motion). Hence, this can be considered a one-dimension problem and we can use the following equation:
Where:
is the final velocity of the egg at the asked height
is the initial velocity of the egg
is the acceleration due gravity
is the distance at which the egg is from the nest, when it is
from the ground
Isolating
:
Substituting the known values:
This is the final velocity of the egg
Explanation:
It is given that,
Speed of a wave, v = 251 m/s
Wavelength of the wave, λ = 5.1 cm = 0.051 m
(1) The frequency of the wave is given by :



(2) Angular frequency of the wave is given by :



(3) The period of oscillation is given by T as :


T = 0.000203 seconds
or
T = 0.203 milliseconds
Hence, this is the required solution.
Solution: The correct order is: C, A, B
The statement of the problem:
How can we prove Earth is round and calculate its circumference?
Hypotheis:
If the sun casts shadows at different angles at the same time of day in different places, we can determine how much Earth curves.
If the Earth was flat, the angle measured at different places at the same time of the day would be same.
Observation:
In Syene, the sun's rays are vertical at noon. At the same time in Alexandria, the rays are 7.2 degrees from the vertical.