Answer:
One ATP molecule's hydrolysis can move 3 ions of Sodium (Na+) across the menbrane.
Explanation:
As you can see, the energy provided by ATP is enough for moving 3 ions of Na+. Each ion needs +2.1 kcal/mol of energy.
If we multiply by 3 the energy for moving across the membrane= +6.3 kcal/mol
By adding the energy from ATP:
ΔGTotal=6.3-7.3= -1 kcal/mol
Answer: 1) C; 2)D; 3)B; 4)B; 5) A
Explanation:Interpreting the following Arterial Blood gases, we have
1. pH 7.33 PaCO2 60 HCO3 34----Respiratory acidosis with partial compensation----C
2. pH 7.48 PaCO2 42 HCO3 30------. Metabolic alkalosis without compensation----D
3. pH 7.38 PaCO2 38 HCO3 24 ----- Normal---B
4. pH 7.21 PaCO2 60 HCO3 24------ Respiratory acidosis without compensation-----B
5. pH 7.48 PaCO2 28 HCO3 20 ----Respiratory alkalosis with partial compensation
The Arterial blood gas interpretation from analysis shows the pH and the partial pressures of oxygen and carbon dioxide in the arterial blood of an individual which can detect how well the lungs are functioning thereby making a physician make a diagnosis, estimate the severity of a condition and profer treatment.
Explanation:
It is known that 1 gram contains 1000 milligrams. And, mathematically we can represent it as follows.
or 
So, when we have to convert grams into milligrams then we simply multiply the digit with 1000. And, if we have to convert a digit from milligrams to grams then we simply divide it by 1000.
Sodium-22 remain : 1.13 g
<h3>Further explanation
</h3>
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually, radioactive elements have an unstable atomic nucleus.
General formulas used in decay:

T = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
half-life = t 1/2=2.6 years
T=15.6 years
No=72.5 g

Answer:
B) irreversible process
Explanation:
The process given here is irreversible.