Answer:
<h3>The answer is option B</h3>
Explanation:
The pH of a solution can be found by using the formula
pH = - log [ H+ ]
To find the hydrogen ion concentration substitute the pH into the above formula and solve for the [ H+ ]
From the question
pH = 4.25
So we have
4.25 = - log [ H+ ]
<u>Find the antilog of both sides</u>
That's
<h3>
![[ H+ ] = {10}^{ - 4.25}](https://tex.z-dn.net/?f=%5B%20H%2B%20%5D%20%3D%20%20%7B10%7D%5E%7B%20-%204.25%7D%20)
</h3>
We have the final answer as
<h2>
![[ H+ ] = 5.6 \times {10}^{ - 5} \: M](https://tex.z-dn.net/?f=%5B%20H%2B%20%5D%20%3D%205.6%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%205%7D%20%20%5C%3A%20M)
</h2>
Hope this helps you
<span>
It's simple:
rate of change = change in height / time period
= (7600 - 7598) / 40 = 2 / 40 = 0.05 feet / yr</span>
Answer:
d. One single bond and two double bonds.
Explanation:
The octate rule is a chemical rule in which the atoms prefer to have eight electrons in the valence shell. Where a single bond provide two electrons and a double bond provide 4 electrons. Thus:
a. Two double bonds
. Two double bonds provide 8 electrons. Octate rule <em>is not </em>violated
b. Three single bonds and one pair of electrons
. Three single bonds provide 6 electrons and one pair of electrons provide two electrons. Thus, you have eight electrons and octate rule <em>is not</em> violated
c. Two single bonds and one double bond
. Two single bonds provide four electrons and one double bond 4. Thus, you have eight electrons and octate rule <em>is not </em>violated.
d. One single bond and two double bonds. One single bond provides two electrons and two double bonds 8. Thus, you have 10 electrons and <em>octate rule is violated.</em>
e. Four single bonds. Four single bonds provide 8 electrons. Octate rule<em> is not </em>violated.
I hope it helps!