Answer:
18 W
Explanation:
Applying,
P = V²/R.................. Equation 1
Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs
Since: It is a series circuit,
Then,
R = R1+R2............. Equation 2
Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb
Given: R1 = R2 = 8 Ω
Substitute into equation 1
R = 8+8
R = 16 Ω
Also Given: V = 12 V
Substitute into equation 1
P = 12²/8
P = 144/8
P = 18 W
Starting from the angular velocity, we can calculate the tangential velocity of the stone:

Then we can calculate the angular momentum of the stone about the center of the circle, given by

where
m is the stone mass
v its tangential velocity
r is the radius of the circle, that corresponds to the length of the string.
Substituting the data of the problem, we find
Answer:
The options are approximations of the exact answers:
A) 
B) 
C) 
D) Toward the inner wall
E) 
Explanation:
A) The electric field in a parallel plate capacitor is given by the formula
, where
and in our case
and, for air,
, so we have:

B) The K+ ion has one elemental charge excess, so its charge is
, and the force a charge experiments under an electric field E is given by F=qE, so we have:

C) The potential difference between two points separated a distance d under an uniform electric potential E is given by
, so we have:

D) The electic field goes from positive to negative charges, so it goes towards the inner wall.
E) The work done by an electric field through a potential difference
on a charge Q is
, and is equal to the kinetic energy imparted on it, so we have:

Answer:
option C
Explanation:
given,
energy dissipated by the system to the surrounding = 12 J
Work done on the system = 28 J
change in internal energy of the system
Δ U = Q - W
system losses energy = - 12 J
work done = -28 J
Δ U = Q - W
Δ U = -12 -(-28)
Δ U = 16 J
hence, the correct answer is option C
The correct answer to the question is that the lost mass has been converted into energy.
EXPLANATION:
From Einstein's theory, we know that energy and mass are inter convertible .
When some amount of mass is lost, same amount of energy equivalent to mass is produced.
Let us consider m is the mass lost during any reaction. Hence, the amount of energy produced will be-
Energy E =
Here, c is the velocity of light i.e c = 
As per the question, uranium-235 undergoes fission. The amount of mass defect is 0.1 %.
The mass defect is defined as the difference between mass of reactants and products. During the fission, energy is produced.
The energy produced in this reaction is nothing else than the energy equivalent to mass defect. Approximately 199.5 Mev of energy equivalent to this mass defect is produced in this reaction.