Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf
Combine all of the x's on one side of the equation and then finish the problem!
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct answer is option c
Explanation:
Faraday states that when there is a change in magnetic field of a coil of a wire, it means that there exist an emf in the circuit which in induced due to the change in the magnetic flux
From the question two separate but nearby coils are mounted along the axis. First coil is connected to the power supply and the current flow is controlled by the supply.When the current alternates, it would produce magnetic field ,also the second coil is connected to an ammeter which indicates the current that is flowing in it when current in the first coil changes
This magnetic field that is produce would cause a change flux which would induce current in the second coil so the ammeter would indicate current flow in the second coil
a is incorrect because the current in fir coil is not change hence flux won't change therefore current is is not induced in second coil
This is the same reason b is incorrect
d is incorrect due to the fact that when the second coil is connected to a power supply by rewiring it to be in series with first coil the law of electromagnetism would no longer hold so he ammeter would show no reading
I would have to say that it is Y
Complete Question
The complete question is shown on the first uploaded image
Answer:
The velocity is
in positive x -direction
The speed is 
Explanation:
From the question we are told that
The distance from the house to truck is D = 20 m
The distance traveled back to retrieve wind-blown hat is d = 15
The distance from the wind-blown hat position too the truck is k = 20 m
The total time taken is t = 75 s
Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative
Generally Justin's displacement is mathematically represented as

=> 
Generally the average velocity is mathematically represented as

=> 
=>
Generally the distance covered by Justin is mathematically represented as

=> 
=> 
Generally Justin's average speed over a 75 s period is mathematically represented as

=> 
=> 