Answer : The correct option is, Only Student B
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that nitrogen has '5' valence electrons and hydrogen has '1' valence electron.
Therefore, the total number of valence electrons in
= 5 + 3(1) = 8
According to Lewis-dot structure, there are 6 number of bonding electrons and 2 number of non-bonding electrons.
The Lewis dot structure of student A is wrong because there is a coordinate bond present between the nitrogen and hydrogen is not covalent.
Thus, the correct Lewis-dot structure of
is shown by the student B.
The transition metal with the smallest atomic mass is Scandium (Sc).
Hope this helps~
Answer:
0.33 mol
Explanation:
Given data:
Volume of balloon = 8.3 L
Temperature = 36°C
Pressure = 751 torr
Number of moles of hydrogen = ?
Solution:
Temperature = 36°C (27 +273 = 300 K)
Pressure = 751 torr (751/760= 0.988 atm)
Formula:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
PV = nRT
0.988 atm × 8.3 L = n × 0.0821 atm.L/ mol.K ×
300 K
8.2 atm.L = n × 24.63 atm.L/ mol
n = 8.2 atm.L / 24.63 atm.L/ mol
n = 0.33 mol
Answer:
DNA between a human and a banana is 41 percent similar.
Explanation:
Answer is: molality of urea is 5.84 m.
If we use 100 mL of solution:
d(solution) = 1.07 g/mL.
m(solution) = 1.07 g/mL · 100 mL.
m(solution) = 107 g.
ω(N₂H₄CO) = 26% ÷ 100% = 0.26.
m(N₂H₄CO) = m(solution) · ω(N₂H₄CO).
m(N₂H₄CO) = 107 g · 0.26.
m(N₂H₄CO) = 27.82 g.
1) calculate amount of urea:
n(N₂H₄CO) = m(N₂H₄CO) ÷ M(N₂H₄CO).
n(N₂H₄CO) = 27.82 g ÷ 60.06 g/mol.
n(N₂H₄CO) = 0.463 mol; amount of substance.
2) calculate mass of water:
m(H₂O) = 107 g - 27.82 g.
m(H₂O) = 79.18 g ÷ 1000 g/kg.
m(H₂O) = 0.07918 kg.
3) calculate molality:
b = n(N₂H₄CO) ÷ m(H₂O).
b = 0.463 mol ÷ 0.07918 kg.
b = 5.84 mol/kg.