answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
1 year ago
7

Two ice skaters, Lilly and John, face each other while stationary and push against each others hands. John's mass is twice the m

ass of Lilly. How do their speeds compare after the push offs?
Physics
1 answer:
VladimirAG [237]1 year ago
7 0

Answer:

lily's speed would be twice john's speed

You might be interested in
A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta
Dvinal [7]
Nobody will do that for 5 points loll
8 0
2 years ago
A ball is dropped from the top of a cliff. By the time it reaches the ground, all the energy in its gravitational potential ener
Bingel [31]

The ball was dropped from a height 20 meters

Explanation:

The given is

1. A ball is dropped from the top of a cliff

2. By the time it reaches the ground, all the energy in its gravitational

   potential energy store has been transferred into its kinetic energy

   store, that mean K.E = P.E

3. The ball is travelling at 20 m/s when it hits the ground

4. The gravitational field strength is 10 N/kg

We need to find the height that the ball dropped from it

The ball dropped from the top of a cliff means the initial speed is 0

→ K.E = \frac{1}{2}m(v^{2}-v_{0}^{2})

where v is the final speed, v_{0} in the initial speed and m

is the mass

→ v = 20 m/s and v_{0} = 0 m/s

→ K.E = \frac{1}{2}m(20^{2}-0^{2})

→ K.E = \frac{1}{2}m(400)

→ K.E = 200 m joules ⇒ when the ball hits the ground

→ P.E = m g h

where g is the gravitational field strength, m is the mass and h is

the height

→ g = 10 N/kg

→ P.E = m(10)(h)

→ P.E = 10 m h joules

→ P.E = K.E

→ 10 m h = 200 m

Divide both sides by 10 m

→ h = 20 meters

The ball was dropped from a height 20 meters

Learn more

You can learn more about gravitational potential energy in brainly.com/question/1198647

#LearnwithBrainly

8 0
1 year ago
Two climbers are on a mountain. Simon, of mass m, is sitting on a snow covered slope that makes an angle θ with the horizontal.
elena-14-01-66 [18.8K]

Answer:

Explanation:

It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.

Let in equilibrium , tension in rope be T

For balancing Joe

T = M g

For balancing Simon

friction + T = mgsinθ

μmgcosθ+T = mgsinθ

μmgcosθ+Mg = mgsinθ

M = (msinθ - μmcosθ)

M = m(sinθ - μcosθ)

5 0
1 year ago
A student uses an electronic force sensor to study how much force the student’s finger can apply to a specific location. The stu
melisa1 [442]

Answer:

B. Trial 2

Explanation:

Trial 2, because the student’s finger applied the largest force to the sensor.

Because the trial 2 student finger applied to largest force.

7 0
2 years ago
Read 2 more answers
Driving your Ferrari through the Italian countryside at a speedy 88 m/s, you approach an opera diva singing a high C (1,046 Hz).
MrRissso [65]

Answer:

You will hear the note E₆

Explanation:

We know that:

Your speed = 88m/s

Original frequency = 1,046 Hz

Sound speed = 340 m/s

The Doppler effect says that:

f' = \frac{v \pm v0 }{v \mp vs}*f

Where:

f = original frequency

f' = new frequency

v = velocity of the sound wave

v0 = your velocity

vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.

Replacing the values that we know in the equation we have:

f' = \frac{340 m/s + 88m/s}{340 m/s} *1,046 Hz = 1,316.73 Hz

This frequency is close to the note E₆ (1,318.5 Hz)

7 0
1 year ago
Other questions:
  • Disturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly h
    12·1 answer
  • Un electrón en un tubo de rayos catódicos acelera desde el reposo con una aceleración constante de 5.33x10¹²m/s² durante 0.150μs
    10·1 answer
  • Military specifications often call for electronic devices to be able to withstand accelerations of 10 g. to make sure that their
    9·1 answer
  • As a car drives with its tires rolling freely without any slippage, the type of friction acting between the tires and the road i
    14·2 answers
  • A stone falls from rest from the top of a cliff. A second stone is thrown downward from the same height 2.7 s later with an init
    5·1 answer
  • A stunt cyclist needs to make a calculation for an upcoming cycle jump. The cyclist is traveling 100 ft/sec toward an inclined r
    8·1 answer
  • A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
    5·1 answer
  • A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0° below the horizontal. It is held in position by a fri
    6·1 answer
  • A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight. (a) Calculate the mass of the
    15·1 answer
  • The free-electron density in a copper wire is 8.5×1028 electrons/m3. The electric field in the wire is 0.0520 N/C and the temper
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!