Answer:
The empirical formula of this substance is:

Explanation:
To find the empirical formula of this substance we need the molecular weight of the elements Carbon, Hydrogen and Oxygen, we can find this information in the periodic table:
- C: 12.01 g/mol
- H: 1.00 g/mol
- O: 15.99 g/mol
With the information in this exercise we can suppose in 100 g of the substance we have:
C: 48.64 g
H: 8.16 g
O: 43.2 g (100 g - 48.64g - 8.16g= 43.2 g)
Now, we need to divide these grams by the molecular weight:

We need to divide these results by the minor result, in this case O=2.70 mol

We need to find integer numbers to find the empirical formula, for this reason we multiply by 2:

This numbers are very close to integer numbers, so we can find the empirical formula as subscripts in the chemical formula:

Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.
Letter d, because they are both alkali metals (group one)
Answer:
The cell reaction reaches equilibrium quickly and the cell emf becomes zero.
Explanation:
The purpose of a salt bridge is not to move electrons from the electrolyte, its main function is to maintain charge balance because the electrons are moving from one-half cell to the other.
A solution of a salt that dissociates easily is normally used. Water is ineffective at functioning as a salt bridge. Hence the effect stated in the answer.