To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

Where
A = Cross-sectional Area
Y = Young's modulus
= Coefficient of linear expansion for steel
= Temperature Raise
Our values are given as,




Replacing we have,


Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N
Answer:

Explanation:
The fusion reaction in this problem is

The total energy released in the fusion reaction is given by

where
is the speed of light
is the mass defect, which is the mass difference between the mass of the reactants and the mass of the products
For this fusion reaction we have:
is the mass of one nucleus of hydrogen
is the mass of one nucleus of helium
So the mass defect is:

The conversion factor between atomic mass units and kilograms is

So the mass defect is

And so, the energy released is:

Answer:
halved
Explanation:
The velocity of the a wave is obtained by multiplying the frequency and wavelength.

Where
v = Velocity
f = Frequency
= Wavelength
The velocity here is constant. So, if the frequency is doubled the wavelength is halved.
Answer:
335°C
Explanation:
Heat gained or lost is:
q = m C ΔT
where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.
Heat gained by the water = heat lost by the copper
mw Cw ΔTw = mc Cc ΔTc
The water and copper reach the same final temperature, so:
mw Cw (T - Tw) = mc Cc (Tc - T)
Given:
mw = 390 g
Cw = 4.186 J/g/°C
Tw = 22.6°C
mc = 248 g
Cc = 0.386 J/g/°C
T = 39.9°C
Find: Tc
(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)
Tc = 335
Answer:
the hypotenuse = 13.78 cm
Ф = 27.44°
θ = 62.56°
explanation: